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Abstract

The self-controlled case series model may be used to analyse recurrent events which are condi-
tionally independent given �xed or random individual e¤ects. In order to test the hypothesis of
within-individual independence, the model is augmented by an association parameter for diagonal
dependence, which provides the focus for a test of independence. Estimation methods are described,
and simulations are presented to illustrate the power of the method in relevant scenarios, and to
quantify the bias resulting from failure of the independence assumption. The methods are applied to
two data sets, relating to a rare bleeding disorder and to myocardial infarction.
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1 Introduction

The self-controlled case series method was originally developed to investigate the association between
time-varying exposures, usually of short duration, and rare acute events (Farrington 1995). The method
has been used extensively in pharmacoepidemiology, particularly to investigate rare adverse events in
relation to childhood vaccination (Whitaker et al 2006). Recently, a semiparametric version of the
method has been proposed (Farrington & Whitaker 2006).
The case series model is derived from a Poisson cohort model by conditioning on the total number

of events experienced by each individual in the cohort over a pre-determined observation period. Thus,
the method applies to recurrent events, arising within individuals in a non-homogeneous Poisson process
whose rate parameter might depend on individual factors, �xed or random. In practice, many events of
interest are rare and non-recurrent. The method can also be used in this case, with an approximation that
becomes ignorable as the underlying event rate tends to zero (Farrington 1995, Farrington & Whitaker
2006).
In some situations, however, recurrences are important, and relatively frequent. Later in the paper,

we present two examples where this is the case. The �rst relates to the rare bleeding disorder idiopathic
thrombocytopenic purpura (ITP). While ITP is rare, the incidence in individuals varies greatly, so that
some individuals experience frequent recurrences. It is not clear whether such recurrences are independent
within individuals. The second example relates to myocardial infarction (MI): occurrence of a �rst MI
increases the risk of further MIs, so recurrences are not independent within individuals in this case.
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In analyses with the self-controlled case series method, it is required that recurrent events should
be independent within individuals. In particular, occurrence of an event should not a¤ect the rate at
which subsequent events may occur. If this assumption is invalid, or its validity is uncertain, a reasonable
analysis strategy may be to limit the analysis to �rst events (Whitaker et al 2006). However, within-
individual dependence may itself be of interest, and it would in any case be useful to evaluate the strength
of evidence against independence. Furthermore, when studying the e¤ect of an exposure on rare events,
it might be desirable to include all such events in order to maximize the e¢ ciency of the exposure e¤ect
estimator.
There is a substantial literature on modelling strategies for the various types of dependence that

may arise in the study of recurrent events. Cook & Lawless (2007) provide a comprehensive discussion
of these methods in survival analysis. However, once we move beyond the non-homogeneous Poisson
process, possibly with time-invariant frailties, conditioning on the total number of events to eliminate
non-cases no longer factors out multiplicative time-invariant covariates. Thus, the potential for bias
due to unmeasured confounders, which the case series approach sought to reduce, is reintroduced. At
most, one may hope that a suitable analysis strategy will prove robust to mis-speci�cation of the model.
Whatever the analysis strategy, it is important to check the validity or otherwise of the assumption of
within-individual independence.
Hocine et al (2005) developed a bivariate version of the case series method, using a copula represen-

tation, to study dependence between di¤erent types of events, with application to antibiotic resistance
(Hocine et al 2007). Hougaard (2000) discusses several measures of dependence in the context of multi-
variate survival data. However, these measures apply to parallel data, rather than recurrent events for
which statistical dependence is present simply by virtue of the order constraints imposed on the sample
space (a second event, if it occurs, having necessarily to follow the �rst). Furthermore, di¤erent individ-
uals will experience di¤erent numbers of events, so that the dimension of the space is not �xed. These
considerations lead us to develop a test specially designed to investigate within-individual dependence of
recurrences within the context of the self-controlled case series model.
In Section 2, we describe the case series model and a simple extension of it, using a one-parameter

dependence function, to enable testing of the independence assumption. In Section 3 we provide two
further interpretations of this extended model. In Section 4 we discuss models for the dependence
function. Estimation and tests are discussed in Section 5, including a simple method which can be used
for single recurrences within the context of the standard self-controlled case series method. In Section 6
we study the performance of the method using simulations. We apply the proposed methods to the ITP
and MI data in Section 7. Finally, analysis strategies are discussed in Section 8.

2 The self-controlled case series model and a simple extension

We consider events occurring within speci�ed boundaries of age and time, which de�ne which events are
ascertained. These boundaries determine individual observation periods of the form (ai; bi] for individual
i = 1; 2; :::; N . For simplicity, we shall use age as the primary time line, though other choices (notably
calendar time) might be relevant in other applications. Within their observation period, individuals also
experience age-dependent exposures. Let xi(t) denote the vector of exposures experienced by individual
i at age t.

2.1 The case series likelihood

Over the period (ai; bi], individual i experiences events that arise with intensity process �i(tjxi(t)). The
likelihood that individual i experiences ni events at times ti1; :::; tini (which for the moment we regard
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as unordered and independent) is

Lui =

niY
j=1

�i(tij jxi(tij))� exp

8<:�
biZ
ai

�i(tjxi(t))dt

9=; :

Two fundamental assumptions of the case series method is that the exposure process is exogenous and that
censoring of observation at bi occurs completely at random; see Farrington & Whitaker (2006) for further
details, and Roy et al (2006) and Farrington et al (2008) for ways round these assumptions. They enable
us to condition on the entire exposure history over (ai; bi], which we denote xi. Note that the process
of events for individual i is then a non-homogeneous Poisson process with rate �i(tjxi). Conditioning on
the number of events ni experienced by individual i in (ai; bi] yields the following conditional likelihood:

Lci =

Yni

j=1
�i(tij jxi)(Z bi

ai

�i(tjxi)dt
)ni : (1)

This is the self-controlled case series likelihood. If ni = 0 then Lci = 1, and consequently individuals
who experience zero events contribute trivially and hence need not be sampled: the conditional likelihood
can be evaluated from a sample of cases. Hence the name case series method. Furthermore, suppose
that

�i(tjxi) = ' (t) exp
�

i + xi(t)

T�
	

(2)

where ' is the baseline incidence at some reference age,  (t) is an age e¤ect common to all individuals, 
i
is the sum of random and �xed e¤ects, possibly covariate-dependent, and � is the log relative incidence
associated with the exposure. Then

Lci =

Yni

j=1
 (tij) exp

�
xi(tij)

T�
	

(Z bi

ai

 (t) exp fxi(t)T�g dt
)ni : (3)

Thus the term ' exp(
i) cancels. It follows that the e¤ects of all time-invariant covariates acting mul-
tiplicatively on the Poisson rate are necessarily controlled, and cannot confound the analysis: for this
reason the method is called the self-controlled case series method.
Very often, the exposure variables xi(t) are age-dependent indicator variables, though continuous

exposures may also be used (Whitaker, Hocine & Farrington 2006). The age e¤ect  (t)may be represented
by a low-dimensional parametric model, such as a step function (Farrington 1995), or modelled non-
parametrically (Farrington & Whitaker 2006).

2.2 A simple extension

Note that the conditional likelihood (1) can be written as a product of ni terms of the form

�i(tij jxi)Z bi

ai

�i(tjxi)dt
; j = 1; :::; ni:

In other words, the ni events within individual i are conditionally independent. It follows that representa-
tions of clustered recurrences using frailty terms, as often done in the survival literature to accommodate
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heterogeneity between individuals (Hougaard 2000; Cook & Lawless 2007), will not induce dependence
in the case series model, since events remain independent within clusters.
In order to test the hypothesis of within-individual independence, we embed the model in a wider

family indexed by an association parameter �; the value � = 0 will correspond to independence within
individuals, and the test of independence is formulated as a test of � = 0. Note that the likelihood
contribution (1) for an individual i with ni = k events, ordered as ti1 < ::: < tik may be written
equivalently

Lci =
�i(ti1jxi)� :::� �i(tikjxi)Z bi

ai

Z bi

t1

:::

Z bi

tk�1

�i(tkjxi)dtk:::dt2dt1
:

We extend this expression by introducing a non-negative dependence function Hk(t1; :::; tk; �), for
which Hk(t1; :::; tk; 0) � 1, so that the likelihood contribution becomes

Lki =
�i(ti1jxi)� :::� �i(tikjxi)�Hk(ti1; :::; tik; �)Z bi

ai

�i(t1jxi)
Z bi

t1

�i(t2jxi):::
Z bi

tk�1

�i(tkjxi)Hk(t1; :::; tk; �)dtk:::dt2dt1

: (4)

This is a valid likelihood, which reduces to the case series likelihood when � = 0. Suitable choice of the
dependence functions Hk to represent within-individual dependence will be discussed in section 4. Note
that if H(:) is symmetric in its arguments, so that for any permutation � of order k, Hk(t1; :::; tk) =
Hk(t�(1); :::; t�(k)), then the denominator of (4) is equal to

1

k!

biZ
ai

:::

biZ
ai

�i(t1jxi):::�i(tkjxi)Hk(t1; :::; tk; �)dtk:::dt1:

Henceforth, we shall drop explicit reference to � in Hk(:; �).

3 Two alternative derivations of the model

The augmentation of the self-controlled case series model presented above is purely heuristic. In this
section we provide two further interpretations of the model, as a multi-dimensional case series model,
and as an approximation to a time-varying frailty model.

3.1 A multi-dimensional case series interpretation

Since the derivation of the case series likelihood involves conditioning on the number of events ni = k,
say, it is natural to represent the vector (ti1; :::; tik) as a single point in the space Qi(k) = f(t1; :::; tk) 2
(ai; bi]

k : t1 < ::: < tkg. As before, we can model the occurrence of such points as a Poisson process
on Qi(k) with rate �i(t1; :::; tkjxi) and, conditioning on the occurrence of one such element, obtain the
conditional likelihood

Lki =
�i(ti1; :::; tikjxi)Z

Qi(k)

�i(t1; :::; tkjxi)dtk:::dt1
: (5)

Now set

�i(t1; :::; tkjxi) =
kY
j=1

�i(tj jxi)�Hk(t1; :::; tk)
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where �i(tjxi) is the univariate Poisson rate de�ned in equation (2), and Hk(t1; :::; tk) is the dependence
function introduced earlier. With this approach, we condition not on the number of events, but on the
dimension of the space in which the individual�s event history within (ai; bi] is inscribed. This shift
of perspective enables us to introduce the dependence function Hk rather more naturally within a self-
controlled case series model without a¤ecting the key aspects of the method, namely that only cases (now
individual event histories of dimension > 0) need be sampled, and that all time-invariant multiplicative
e¤ects cancel. Thus, the resulting conditional likelihood remains that of a genuinely self-controlled case
series method, albeit one of increased dimension.
The density (5) has support above the diagonal. Other densities have been proposed for ordered data,

notably by Jones and Larsen (2004). In our context, the primary focus remains the underlying univariate
rate function �i(t) and, speci�cally, how it varies with exposure. Typically, a case series dataset will
include individuals with 1, 2, 3... events, and the data likelihood will be a product of terms of the form
(5) for di¤erent values of k, linked by the shared form of �i(t) and, largely for convenience, a single
dependence parameter �.

3.2 A time-varying frailty interpretation

A standard derivation of multivariate time to event distributions is via copulas, often with interpretations
in terms of frailties (Hougaard 2000). As previously explained, a constant frailty will not induce the type
of dependence we are interested in, since such frailties describe between-individual, not within-individual
heterogeneity. In the present subsection we relate our model to one obtained using time-varying frailties.
Suppose that events for individual i arise according to the non homogeneous Poisson process with rate

Ui(t)�(tjxi(t)), where Ui(t) <1 is a non-negative random variable of mean 1 and constant variance �2.
The variables Ui(t) are independent between individuals, and represent frailty terms at time t speci�c
to each individual i. We shall assume that the covariance between Ui(t) and Ui(s) depends only on t
and s (and hence is common to all individuals). This time-varying frailty model has been discussed by
Perperoglou et al (2006).
We write

H2(t; s) = E[Ui(t)Ui(s)]

where the expectation is with respect to the joint distribution of Ui(t) and Ui(s). We assume that Ui(t)
is integrable, and de�ne

Ii =

biZ
ai

biZ
t

Ui(t)�(tjxi(t))Ui(s)�(sjxi(s))dsdt:

The random variable Ii has mean

E(Ii) =

biZ
ai

biZ
t

�(tjxi(t))�(sjxi(s))H2(t; s)dsdt.

Suppose now that individual i experiences two events at times ti1 and ti2. Given the event process, and
conditioning on two events having occurred, the conditional likelihood for individual i is

Lci (ti1; ti2jUi(ti1); Ui(ti2); Ii) =
Ui(ti1)�(ti1jxi(ti1))Ui(ti2)�(ti2jxi(ti2))Z bi

ai

Z bi

t

Ui(t)�(tjxi(t))Ui(s)�(sjxi(s))dsdt
:
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We now eliminate the unobserved frailty terms. Expanding the ratio Ui(ti1)Ui(ti2)=Ii in a Taylor series
and taking expectations yields

Lci (ti1; ti2) =
�(ti1jxi(ti1))�(ti2jxi(ti2))H2(ti1; ti2)Z bi

ai

Z bi

t

�(tjxi(t))�(sjxi(s))H2(t; s)dsdt

� f1 +O(�i)g

where �i is the coe¢ cient of variation of Ii and the term in curly brackets represents a power series
in �i. The leading term of this expression is the model we proposed above, with dependence function
H2. We can therefore think of this model as approximating a variable frailty model, the approximation
improving as the coe¢ cient of variation �i of Ii, and hence the frailty variance, get smaller. In this
context, the dependence functionH2 is the second moment function about zero. The argument generalises
straightforwardly to k events, in which case Hk is the kth moment function.

4 Modelling dependence

In this section we consider possible choices for the dependence function Hk, and its interpretation in
terms of long-term and short-term dependence.

4.1 Diagonal dependence

We begin with the bivariate case k = 2, which is the most important. An obvious choice forH2, convenient
for modelling purposes, is

H2(t; s) =

�
exp(�) if jt� sj < �;
1 otherwise.

(6)

The dependence parameter � may be estimated by maximum likelihood. The parameter � is non-regular
(the likelihood is not continuous in �) and so should be chosen in advance. A reasonable strategy is to
explore di¤erent values of �. An alternative, yielding a smooth density, is

H2(t; s) = exp

(
� exp�1

2

�
t� s
�

�2)
: (7)

For both functions, independence within individuals corresponds to � = 0. Both functions represent
a simple form of dependence, in which more (if � > 0) or fewer (if � < 0) events than expected occur
close to the diagonal t = s. We shall refer to such dependence patterns as diagonal dependence.
Generalizing these choices of functions to values k > 2 in a sensible manner is not straightforward.

It is desirable that the parameter � should have the same interpretation in all dimensions. The simplest
way of achieving this is to build up Hk for k > 2 from H2. There is no unique way to do this. For
computational reasons, we shall use the function

Hk(t1; :::; tk) =
2

k(k � 1)
X
r;s

fH2(tr; ts) : tr < tsg (8)

namely, the average of the dependence functions for all k(k � 1)=2 distinct pairs of events.
Alternatively, one could introduce further parameters to describe dependence between events m and

m + 2, between events m and m + 3, and so on. We will not pursue this further. Note �nally that the
functions Hk described here are all symmetric.
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4.2 Short and long term dependence

An interesting feature of the likelihood

Lki =

Yk

j=1
�i(tj jxi)�Hk(t1; :::; tk)Z

Qi(k)

Yk

j=1
�i(tj jxi)�Hk(t1; :::; tk)dtk:::dt1

(9)

is that constant multiplicative terms in Hk cancel out. For example, suppose that k = 2 and consider
the dependence function

H2(t; s) =

�
exp

�
� exp(� 1

2 (t� s)
2=�2) + �

�
if t� s > 0;

1 otherwise.

This describes a jump in the relative incidence from 1 before to exp(� + �) just after the �rst event, and
declining to exp(�) long after. Thus exp(�) can be thought of as long-term dependence on the �rst event,
and exp(�) as an additional short-term factor. However, the terms exp(�) cancel from the likelihood, so
only the short-term e¤ect remains. Note also that H2(t; s) is not symmetric. Thus it is not the case that
L2i = 2!L

c
i , and hence the model does not reduce to the independence model if � = 0.

This has two important implications. First, it is only possible to model short-term dependence in
this framework, or at least time-varying dependence, since constant terms cancel out from the likelihood.
More precisely, we cannot estimate Hk, only the equivalence class [Hk] = fe�Hk; � 2 Rg restricted to
the subspace Qi(k). Second, a test of Hk � 1 is not su¢ cient to test for �full�independence: such a test
can only evaluate the evidence against short-term independence since only the equivalence class of Hk is
identi�able.
This limitation is fundamental to the fact that only cases are sampled. The information required

to determine the value of the constant term exp(�) is contained primarily in the relative frequencies of
singleton cases and pairs (and k-tuples) of cases arising from the underlying cohort of individuals, just
as the value of the baseline incidence parameter ' in the standard case series model depends on the
relative frequency of events and cannot be estimated from a model involving only cases, unless further
information about the case sampling mechanism is available.

4.3 Relation to dependence measures

Consider the special case k = 2. Several bivariate local dependence functions have been suggested
(Clayton 1978; Holland and Wang 1987). An analytically convenient choice is that of Holland and Wang
(1987), namely the cross partial derivative of the log bivariate density, which here is the second derivative
of logH2(t; s). For the smooth dependence model (7), its sign is that of �f1 � (t � s)2=�2g. Thus,
when � > 0, dependence is positive for jt � sj < �, and negative for jt � sj > �; this also characterises
the discontinuous density (6), whence the term diagonal dependence introduced earlier to describe both
dependence functions.

5 Estimation

In this section we turn to the problem of testing the null hypothesis � = 0. It will usually also be of
interest to study the impact of allowing for dependence on the estimate of �, the parameter for the
association with the exposure of primary interest.
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5.1 Poisson modelling

Fitting the model (4) involves evaluating multiple integrals. To avoid the resulting complications, we
propose a simple Poisson modelling approach based on the conditional Poisson representation (5). We
shall use the dependence function (6) and its extension (8) to k dimensions. We take a parametric
function for the baseline relative incidence  (t), which is assumed to be piecewise constant on pre-de�ned
age groups, represented by a factor with L+ 1 levels, and take the exposure vector to have M + 1 levels
(Farrington 1995).
The likelihood contribution of individuals with a single event (and hence ni = 1) is obtained using

the standard case series model (3) (see Farrington 1995, Whitaker et al 2006). Denote the log-likelihood
contribution l1i (�; �; ti) where � is the L-vector of age parameters and � is the M -vector of exposure
parameters.
For an individual with two events at times ti1 and ti2 > ti1 and observation period (ai; bi], the

likelihood contribution is that of a Poisson model in 2 dimensions. De�ne an indicator variable taking
the value 1 within the diagonal f(s; t) : s � t < s + �g band and 0 outside it. The age groupings,
exposures and the diagonal band generate a decomposition of the space f(s; t) 2 (ai; bi]2 : s < tg into
pi non-overlapping polygons of area Di1; :::; Dipi , in which the age factors, exposure factors, and the
diagonal factor take �xed values. Let Nij denote the count of event pairs (0 or 1) within area Dij ,
x1ij the exposure vector (of length M) corresponding to the �rst component of area Dij , and x2ij that
corresponding to its second component, y1ij , y

2
ij the age vectors (of length L) corresponding to the �rst

and second components, respectively, of Dij , and zij the value of the 0 � 1 diagonal indicator on Dij :
The 2-D Poisson likelihood contribution is then

E(Nij) = �ij ; j = 1; :::; pi;

log(�ij) = 
i + log(Dij) + �
T (y1ij + y

2
ij) + �

T (x1ij + x
2
ij) + �zij :

The parameter 
i is an individual-level factor, a nuisance parameter to obtain the multinomial likelihood
from a Poisson model (McCullagh and Nelder, 1989). Let l2i (�; �; �; ti1; ti2) denote the log-likelihood
contribution for an individual with two events. Note that the decomposition into polygons can readily
be programmed; an outline of the algorithm is provided in Appendix 1.
An individual i with k > 2 events at ages ti1; :::; tik has a likelihood contribution comprising weighted

likelihoods for the single event times and distinct event pairs, plus a term depending only on � and
the data. It can be shown that, for the dependence function de�ned in (6) and (8), the log-likelihood
contribution lki (�; �; �; ti1; :::; tik) is

lki (�; �; �; ti1; :::; tik) =
k � 2
k

kX
j=1

l1i (�; �; tij) (10)

+
2

k(k � 1)
X
r<s

l2i (�; �; �; tir; tis) + Jk(�; ti1; :::; tik)

up to a constant term, where

Jk(�; ti1; :::; tik) = log

 
2

k(k � 1
X
r<s

H2(tr; ts)

!
� 2

k(k � 1)
X
r<s

logH2(tr; ts)

is the log ratio of the arithmetic mean to the geometric mean of the pairwise dependence functions. The
identity (10) is proved in Appendix 2.
The data log-likelihood may thus be written as a weighted likelihood for singletons and pairs of the

form �wkl
k(�; �; �), plus a function of �, �Jk(�). This suggests a simple way of obtaining point and
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interval estimates for �: for a given value of �, maximise �wklk(�; �; �) using weighted Poisson regression,
and hence obtain the pro�le log likelihood for �. The pro�le log likelihood for � may be obtained implicitly
by the same method. A test of the null hypothesis � = 0 may be based on the maximised log likelihood
ratio, or on the pro�le likelihood con�dence interval.

5.2 A simple conditional method for singletons and pairs

The method described above, though readily implemented in any log-linear modelling package, is never-
theless rather cumbersome. If the data involve only singletons and pairs, then a much simpler, conditional
method is available, though at the cost of some loss in e¢ ciency.
Individuals with just one event contribute the usual case series likelihood (such cases do not contribute

to the estimation of �, but do contribute to the estimate of age and exposure e¤ects; in a test of � = 0
they could be left out completely). Individuals with 2 events contribute a conditional likelihood, based
on the density of the second event time given the �rst. From the joint density of ti1 and ti2 under the
augmented model, the conditional density of ti2, given ti1 and ni = 2 may be derived as

f(ti2jti1;ni = 2) =
�i(ti2jxi)�H2(ti1; ti2)Z bi

ti1

�i(tjxi)�H2(ti1; t)dt

: (11)

Thus the overall likelihood has the form of a standard case series likelihood, except that for individuals
with 2 events the observation period (ai; bi] is replaced by (ti1; bi]. If the dependence function is that of
equation (6), then the standard case series model may be used, with an additional indicator variable to
denote proximity to ti1. This approach lends itself particularly easily for use with both a parametric and
semiparametric case series model (Farrington and Whitaker 2006).
This simple method involves some loss of information about �. The asymptotic relative e¢ ciency

ARE of the conditional method, relative to the bivariate model, may readily be calculated in the simple
scenario where there are no age or exposure e¤ects, and all individuals have the same observation period
(0; 1], using the diagonal dependence function (6):

ARE =
[e�� (2� �) + (1� �)2]� [1� � � �e� log(1 + (1� �)=�e�)]

(1� �=2)� (1� �)2 :

As shown in Figure 1, in this scenario the relative e¢ ciency is greater than 0:8 when exp(�) � 1.
Thus, in general, the loss in e¢ ciency might be expected to be moderate. However, the method does not
extend readily to individuals with k > 2 events, unless dependences between the �rst k � 1 event times
are ignored.

6 Simulations

In this section we study the performance of the method by simulation. We quantify the bias in �, the
association parameter of primary interest, when the assumption of within-individual independence is
violated, and study the extent to which estimation from the augmented model reduces this bias. Second,
we study the power of the method to identify the presence of intra-individual clustering. We consider three
scenarios, both involving only event pairs. In the �rst, event pairs arise in a planar Poisson process; thus,
the simulated data are generated according to the underlying model as described in subsection 3.1. In the
second scenario, we assume that occurrence of one event at age t increases the risk of a second event over
some period (t; t+ �]. Under this scenario, the data are no longer generated according to the underlying
model. Finally, in the third scenario, we assumed that individual event rates were modulated by a time-
varying frailty, independently between individuals. The data are no longer generated according to the
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Figure 1: Asymptotic relative e¢ ciency (ARE) of the conditional method, for three values of exp(�): 1
(full line), 2 (long dashes), 5 (short dashes).

underlying model, though it provides an approximation to the time-varying frailty model as described in
Subsection 3.2.
In all simulations, we assume that all individuals have the same observation period (0; 1], are all

exposed at v = 0:45 with a risk period e = 0:1, that the marginal event rates do not vary with age and
are increased by the factor exp(�) in the risk period. The dependence function is of the form (6).
To study the bias in the exposure e¤ect �, we simulated N = 106 event pairs (for event-dependent

rates, we used N = 105 to reduce computation time) for each combination of � = 0:15; 0:25; exp(�) =
0:5; 1; 1:5; 2; 5; 10; exp(�) = 1:5; 2; 3; 5; 10, and analysed the simulated data using the standard case series
model (in which it is assumed that events are independent within individuals) with only the exposure
e¤ect, and the augmented model allowing for exposure and diagonal dependence (with the correct �).
For the simulations under the event-dependent and frailty models, we also allowed for age in the aug-
mented model, since model mis-speci�cation can induce spurious age e¤ects. We used the 4 age groups
(0; 0:25]; (0:25; 0:5]; (0:5; 0:75], and (0:75; 1]. The bias shown in the tables below is bE(b�)��, where bE de-
notes the average of the N simulated values; when small it is roughly equal to the relative bias in exp(�).
We also report the impact of di¤erent estimation strategies on the standard errors, when N = 100 (using
103 replicates), in some of the more extreme scenarios, namely exp(�) = 10 with exp(�) = 2 and 10.
We report the empirical standard error of b�, namely the standard deviation of the 103 replicates, as well
as the mean of the estimated standard errors, and the % di¤erence, namely 100 times the mean of the
estimated SE minus the empirical .SE, divided by the empirical SE.
To study power, we simulated 103 sets of N event pairs for each combination of N = 50; 100; 500;

� = 0:15; 0:25; exp(�) = 2; 10; exp(�) = 1; 1:25; 1:5; 2; 3; 5; 10. We calculated the proportion of the 103

runs in which the null hypothesis of no intra-individual association (i.e. � = 0) was rejected using the
likelihood ratio test.
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6.1 Simulations under the assumed model

The subspace f(s; t) : 0 < s < t < 1g is partitioned into 11 distinct polygons. Counts of event pairs
were generated using multinomial sampling from these 11 categories. The bias in � that results from
ignoring dependence between individuals is illustrated in Table 1. The bias increases as exp(�) and exp(�)
increase; the relationship with � is more complex. Under the Poisson model, substantial bias may arise
in the estimation of � if the independence assumption is violated. The augmented model completely
removes this bias.

Table 1 Poisson model. Bias in b�, without (NC) and with (C) correction for diagonal dependence, for
di¤erent values of exp(�), exp(�) and �:

� = 0:15 � = 0:25
exp(�) exp(�)

exp(�) 1.5 2 3 5 10 1.5 2 3 5 10
10 NC 0.155 0.268 0.411 0.568 0.722 0.118 0.190 0.280 0.365 0.438

C -0.002 0.002 0.000 0.002 0.000 0.001 -0.001 0.002 0.002 0.002
5 NC 0.099 0.175 0.273 0.384 0.496 0.082 0.136 0.200 0.268 0.321

C -0.002 0.000 -0.001 -0.001 -0.002 -0.000 -0.000 -0.001 0.002 -0.002
2 NC 0.043 0.072 0.113 0.165 0.219 0.046 0.076 0.116 0.153 0.191

C 0.003 0.001 -0.002 -0.000 -0.000 0.001 -0.000 0.000 -0.001 0.001
1:5 NC 0.026 0.045 0.077 0.107 0.148 0.036 0.062 0.092 0.129 0.160

C -0.000 -0.002 0.001 -0.003 0.001 -0.001 -0.001 -0.002 0.002 0.002
1 NC 0.011 0.020 0.029 0.047 0.062 0.029 0.045 0.069 0.097 0.126

C -0.000 0.000 -0.003 0.001 -0.001 0.001 -0.002 -0.003 0.000 0.005
0:5 NC -0.001 -0.010 -0.016 -0.028 -0.034 0.014 0.030 0.051 0.065 0.080

C 0.006 0.002 0.003 -0.000 0.004 -0.003 -0.001 0.005 0.002 0.002
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence and exposure e¤ects.

Table 2 Poisson model. Estimated and empirical standard errors for di¤erent values of exp(�) and �
� exp(�) Estimated Empirical % di¤erence
0:25 10 NC 0.147 0.168 -12.5

C 0.140 0.149 -6.0
2 NC 0.174 0.182 -4.4

C 0.165 0.163 +1.2
0:15 10 NC 0.155 0.180 -13.9

C 0.144 0.147 -2.0
2 NC 0.172 0.193 -10.9

C 0.154 0.153 +0.7
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence and exposure e¤ects.

Table 2 shows the empirical and average estimated standard errors of b�. In these extreme scenarios,
where exp(�) = 10, �tting the incorrect model, with exposure e¤ect only, results in standard errors that
can be more than 10% lower than the empirical value.
The power is shown in Table 3; for example, it exceeds 80% for exp(�) in excess of 2 when N = 100.

When exp(�) > 1, the power is generally marginally greater for � = 0:25 and exp(�) = 2 than for � = 0:15
or exp(�) = 10:
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Table 3 Poisson model. Power to detect dependence for di¤erent sample sizes N and values of exp(�),
exp(�) and �:

� = 0:15 � = 0:25
N N

exp(�) exp(�) 50 100 500 50 100 500
1 10 0.059 0.049 0.042 0.064 0.047 0.055

2 0.064 0.053 0.062 0.049 0.047 0.050
1:25 10 0.101 0.161 0.558 0.091 0.160 0.591

2 0.108 0.167 0.621 0.125 0.199 0.694
1:5 10 0.194 0.371 0.976 0.241 0.426 0.976

2 0.240 0.442 0.985 0.301 0.536 0.990
2 10 0.541 0.815 1.000 0.541 0.821 1.000

2 0.663 0.924 1.000 0.652 0.938 1.000
3 10 0.852 0.991 0.873 0.990

2 0.962 0.999 0.970 0.999
:5 10 0.990 1.000 0.987 1.000

2 0.999 1.000 1.000 1.000
10 10 1.000 1.000

2 1.000 1.000

6.2 Simulations under an event-dependent model

Event pairs were simulated as follows. A �rst event time t1 was simulated in (0; 1] using the standard
case series model (which is just a Poisson model, conditioned on an event occurring). In the interval
(t1; t1 + �] the Poisson rate was then increased by the factor exp(�), and a second event time t2 > t1 was
simulated. If t2 � 1 the pair (t1; t2) was accepted, otherwise it was discarded and new values t1 and t2
were generated. In addition to varying the parameters mentioned in the introduction to this section, we
also varied the absolute event rate �, which its value now a¤ects the results. We took � = 0:01; 0:1:

Table 4 Event-dependent model, � = 0:01. Bias in b�, without (NC) and with (C) correction for
diagonal dependence, for di¤erent values of exp(�), exp(�) and �.

� = 0:15 � = 0:25
exp(�) exp(�)

exp(�) 1:5 2 3 5 10 1:5 2 3 5 10
10 NC 0.156 0.262 0.406 0.570 0.715 0.123 0.188 0.279 0.365 0.438

C -0.005 -0.010 -0.004 0.003 0.006 0.033 0.033 0.043 0.056 0.063
5 NC 0.096 0.174 0.275 0.384 0.499 0.082 0.143 0.199 0.266 0.328

C -0.005 -0.000 -0.001 0.002 -0.003 0.013 0.034 0.040 0.041 0.059
2 NC 0.047 0.077 0.105 0.165 0.220 0.043 0.079 0.116 0.150 0.189

C 0.004 0.008 -0.004 -0.000 0.001 0.011 0.026 0.037 0.040 0.048
1:5 NC 0.028 0.045 0.080 0.108 0.148 0.046 0.067 0.099 0.126 0.163

C 0.007 -0.000 0.007 0.002 0.001 0.023 0.026 0.043 0.042 0.053
1 NC 0.014 0.021 0.029 0.053 0.062 0.033 0.053 0.072 0.103 0.121

C 0.002 0.002 -0.005 0.001 -0.000 0.021 0.031 0.035 0.051 0.057
0:5 NC -0.014 -0.020 -0.013 -0.013 -0.039 0.007 0.018 0.048 0.084 0.081

C -0.010 -0.012 0.003 0.016 0.003 0.006 0.016 0.041 0.063 0.058
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence, age and exposure e¤ects.
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The bias resulting from ignoring dependence is shown in Tables 4 and 5. Substantial bias may arise
in the estimation of � if the independence assumption is violated. The augmented model with age and
diagonal dependence, as well as exposure, removes much of this bias, though performance is better for
smaller values of � and �. We also �tted models with just age and exposure (not shown), and in some
instances the bias in the estimation of � was a little less than for the model with age, diagonal dependence
and exposure.

Table 5 Event-dependent model, � = 0:1. Bias in b�, without (NC) and with (C) correction for diagonal
dependence, for di¤erent values of exp(�), exp(�) and �, when � = 0:1:

� = 0:15 � = 0:25
exp(�) exp(�)

exp(�) 1:5 2 3 5 10 1:5 2 3 5 10
10 NC 0.168 0.280 0.420 0.546 0.644 0.135 0.215 0.298 0.363 0.417

C -0.007 -0.002 -0.000 -0.009 -0.010 0.034 0.059 0.074 0.083 0.110
5 NC 0.117 0.191 0.283 0.368 0.455 0.091 0.144 0.213 0.259 0.312

C -0.001 0.001 -0.001 -0.014 -0.015 0.021 0.036 0.050 0.053 0.077
2 NC 0.044 0.069 0.120 0.178 0.209 0.064 0.085 0.118 0.146 0.183

C 0.006 -0.010 -0.003 0.008 -0.005 0.026 0.027 0.037 0.038 0.048
1:5 NC 0.039 0.059 0.083 0.109 0.140 0.042 0.061 0.094 0.127 0.147

C 0.004 0.006 -0.001 -0.010 0.001 0.017 0.017 0.032 0.046 0.039
1 NC 0.015 0.037 0.045 0.049 0.065 0.043 0.056 0.081 0.106 0.122

C -0.004 0.011 0.009 0.002 0.003 0.026 0.028 0.040 0.053 0.045
0:5 NC -0.007 -0.009 -0.016 -0.021 -0.041 0.021 0.026 0.055 0.065 0.067

C -0.004 -0.000 -0.002 0.007 -0.007 0.018 0.014 0.040 0.048 0.033
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence, age and exposure e¤ects.

Table 6 shows the standard errors in selected scenarios with exp(�) = 10. Failure to correct for
dependence results in standard errors that are too low, typically by 10% or more, compared to their
empirical values. Allowing for age and diagonal dependence reduces substantially the discrepancy between
estimated and empirical standard errors.

Table 6 Event-dependent model. Estimated and empirical standard errors for di¤erent values of
exp(�) and �

� exp(�) Estimated Empirical % di¤erence
0:25 10 NC 0.147 0.165 -10.9

C 0.176 0.185 -4.9
2 NC 0.174 0.193 -9.8

C 0.192 0.200 -4.0
0:15 10 NC 0.152 0.178 -14.6

C 0.180 0.192 -6.3
2 NC 0.173 0.198 -12.6

C 0.185 0.191 -3.1
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence, age and exposure e¤ects.

Tables 7 and 8 show the power of the likelihood ratio test of � = 0, obtained by comparing the log
likelihoods of the model with exposure and the model with exposure and diagonal dependence. When
� = 0:15 the power exceeds 80% for exp(�) in excess of 2 when N = 100: However, for � = 0:25 the
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power is much less than when � = 0:15. The power is marginally higher for � = 0:1 than for � = 0:01.
If a likelihood ratio test of � = 0 based on models both including age (as well as exposure), the power is
reduced (not shown).

Table 7 Event-dependent model, � = 0:01. Power to detect dependence for di¤erent sample sizes N
and values of exp(�), exp(�) and �.

� = 0:15 � = 0:25
N N

exp(�) exp(�) 50 100 500 50 100 500
1 10 0.042 0.060 0.054 0.061 0.040 0.050

2 0.049 0.047 0.057 0.051 0.053 0.045
1:25 10 0.111 0.141 0.553 0.052 0.061 0.233

2 0.118 0.184 0.670 0.069 0.087 0.260
1:5 10 0.234 0.369 0.967 0.073 0.135 0.610

2 0.281 0.474 0.992 0.101 0.148 0.625
2 10 0.541 0.809 1.000 0.166 0.291 0.955

2 0.652 0.919 1.000 0.214 0.364 0.967
3 10 0.882 0.994 0.292 0.589 1.000

2 0.967 0.999 0.380 0.712 1.000
:5 10 0.986 1.000 0.490 0.865

2 1.000 1.000 0.645 0.922
10 10 1.000 0.663 0.975

2 1.000 0.801 0.987

Table 8 Event-dependent model, � = 0:1. Power to detect dependence for di¤erent sample sizes N
and values of exp(�), exp(�) and �.

� = 0:15 � = 0:25
N N

exp(�) exp(�) 50 100 500 50 100 500
1 10 0.050 0.057 0.064 0.045 0.059 0.063

2 0.044 0.050 0.063 0.050 0.055 0.053
1:25 10 0.124 0.214 0.743 0.060 0.091 0.354

2 0.155 0.220 0.765 0.057 0.095 0.322
1:5 10 0.303 0.481 0.986 0.107 0.155 0.702

2 0.324 0.528 0.999 0.116 0.162 0.713
2 10 0.597 0.863 1.000 0.181 0.369 0.988

2 0.703 0.948 1.000 0.198 0.417 0.989
3 10 0.903 0.994 0.335 0.674 1.000

2 0.979 1.000 0.435 0.740 1.000
:5 10 0.994 1.000 0.554 0.911

2 1.000 0.657 0.936
10 10 1.000 0.755 0.985

2 1.000 0.819 0.992

6.3 Simulations under a varying frailty model

For each individual, we randomly generated u � U(� �
2 ; 1+

�
2 ) and assumed that the individual�s baseline

rate was increased by the factor exp(�) on the interval (u� 1
2�; u+

1
2�). The resulting within-individual
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correlation between times s and t declines linearly from 1 when s = t to 0 when js� tj � �. Event pairs
were generated conditionally on the individual frailties using a standard case series model.
The bias in � resulting from analysing the data unconditionally is shown in Table 9. The bias is

generally small, except when exp(�) and exp(�) are both large. Fitting the augmented model with age
and diagonal dependence has only a moderate (� = 0:25) or virtually nil (� = 0:15) e¤ect in reducing the
bias.

Table 9 Varying frailty model. Bias in b�, without (NC) and with (C) correction for diagonal depen-
dence, for di¤erent values of exp(�), exp(�) and �:

� = 0:15 � = 0:25
exp(�) exp(�)

exp(�) 1:5 2 3 5 10 1:5 2 3 5 10
10 NC -0.009 -0.027 -0.079 -0.183 -0.403 -0.013 -0.038 -0.098 -0.225 -0.450

C -0.009 -0.029 -0.087 -0.200 -0.416 -0.010 -0.026 -0.065 -0.154 -0.315
5 NC -0.006 -0.017 -0.052 -0.131 -0.297 -0.009 -0.023 -0.067 -0.159 -0.319

C -0.006 -0.020 -0.061 -0.145 -0.302 -0.006 -0.015 -0.045 -0.110 -0.221
2 NC -0.004 -0.008 -0.021 -0.054 -0.131 -0.002 -0.012 -0.031 -0.071 -0.154

C -0.003 -0.009 -0.022 -0.053 -0.114 0.000 -0.009 -0.023 -0.047 -0.105
1:5 NC -0.003 -0.005 -0.012 -0.034 -0.082 -0.002 -0.007 -0.024 -0.053 -0.116

C -0.003 -0.005 -0.011 -0.028 -0.058 -0.001 -0.003 -0.017 -0.037 -0.083
1 NC -0.004 -0.001 -0.005 -0.012 -0.027 -0.000 -0.004 -0.013 -0.026 -0.061

C -0.002 -0.000 -0.001 -0.002 0.005 -0.000 -0.004 -0.010 -0.017 -0.043
0:5 NC -0.004 0.000 0.011 0.028 0.055 -0.001 -0.002 -0.001 0.005 -0.002

C -0.006 0.001 0.017 0.044 0.099 0.001 -0.001 -0.000 0.004 -0.002
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence, age and exposure e¤ects.

Table 10 shows the standard errors, which present a similar pattern as with the event-dependent
model.

Table 10 Estimated and empirical standard errors for di¤erent values of exp(�) and �
� exp(�) Estimated Empirical % di¤erence
0:25 10 NC 0.144 0.163 -11.7

C 0.186 0.205 -9.3
2 NC 0.195 0.208 -6.3

C 0.216 0.217 -0.5
0:15 10 NC 0.143 0.161 -11.2

C 0.182 0.196 -7.1
2 NC 0.193 0.215 -10.2

C 0.211 0.226 -6.6
NC: standard case series model with exposure e¤ect only.
C: case series model with diagonal dependence, age and exposure e¤ects.

The power, shown in Table 11, is very low even for a sample size of 500 when exp(�) � 2. It is clear
that only time-varying frailties inducing very strong dependence can be detected with moderate sample
sizes.
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Table 11 Varying frailty model. Power to detect dependence for di¤erent sample sizes N and values
of exp(�), exp(�) and �

� = 0:15 � = 0:25
N N

exp(�) exp(�) 50 100 500 50 100 500
1 10 0.054 0.057 0.049 0.060 0.052 0.045

2 0.062 0.059 0.049 0.057 0.065 0.041
1:25 10 0.066 0.047 0.054 0.052 0.050 0.058

2 0.056 0.050 0.050 0.049 0.052 0.048
1:5 10 0.049 0.042 0.059 0.062 0.051 0.056

2 0.057 0.046 0.051 0.053 0.058 0.059
2 10 0.062 0.055 0.052 0.054 0.075 0.099

2 0.052 0.057 0.075 0.069 0.079 0.183
3 10 0.063 0.082 0.167 0.075 0.103 0.295

2 0.073 0.130 0.443 0.122 0.198 0.740
5 10 0.129 0.196 0.755 0.181 0.307 0.901

2 0.320 0.541 0.995 0.412 0.713 1.000
10 10 0.556 0.835 1.000 0.890 0.910 1.000

2 0.905 0.997 1.000 1.000 0.999 1.000

7 Examples

7.1 ITP and MMR vaccine

Idiopathic thrombocytopenic purpura (ITP) is a rare, potentially recurrent autoimmune disorder in which
abnormal bleeding into the skin occurs due to low blood platelet count. Miller et al (2001) studied the
association between mumps, measles and rubella vaccine (MMR) and hospital admission for ITP within
the South East and North East Thames Regions in the UK. ITP cases arising during the period from
October 1991 to September 1994 and aged 12� 23 months were included in the analysis. These time and
age boundaries were used to de�ne the observation period for each case. The data set included a total of
44 admissions experienced by 35 children; 5 of these children were admitted twice and 1 was admitted 5
times. It was hypothesised that MMR vaccination may, in rare instances, cause ITP. Risk periods covered
the 6 week period after MMR vaccination, and three two-week long risk periods 0�14, 15�28 and 29�42
days after vaccination were used. Of the 35 children, 31 were exposed to MMR vaccine between one and
two years of age. Of the 44 events, 13 occurred within 6 weeks after receipt of the MMR vaccine. The
intervals preceding the 10 repeat events were (in increasing order) 15; 42; 63; 70; 78; 112; 133; 148; 175; 190
days.
We analysed these data using a parametric model with 6 age groups, and the dependence function of

equation (6) with � = 21; 42 and 91 days. The estimates of � with 95% pro�le con�dence intervals given
in Table 12 show that the results are very close for di¤erent values of �; particularly for � � 42.

Table 12 Estimates of � and 95% con�dence intervals (CI) for three values of �
� ( days) b� 95% pro�le CI
21 0:47 (�1:27; 2:50)
42 0:50 (�1:30; 2:60)
91 0:50 (�1:35; 2:60)

The estimates of � are positive, suggestive of positive diagonal dependence. However, they are far
from statistically signi�cant, as shown by the wide con�dence intervals. The pro�le log-likelihood for �
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Figure 2: Pro�le log-likelihood for �, with � = 42 days.

with � = 42 days, shown in Figure 2, is roughly quadratic; similar shapes were obtained for � = 21 and
� = 91 days.
It is also of interest to examine the variation in the estimated model parameters. Table 13 shows the

parameter estimates obtained when � = 0 and � = 0:5 (both regarded as �xed); the � are the log relative
incidences associated with MMR vaccine in the three post-vaccination risk periods, and the � are the log
relative age e¤ects.

Table 13 Parameter estimates (95% con�dence intervals) for two values of �
Parameter Standard model, � = 0 Dependence model, � = 0:5

�1 1:31(0:30; 5:73) 1:31(0:30; 5:71)
�2 5:95(2:52; 14:07) 5:95(2:53; 14:00)
�3 2:60(0:74; 9:07) 2:59(0:74; 9:01)
�1 0:66(0:29; 1:46) 0:65(0:29; 1:45)
�2 0:21(0:06; 0:74) 0:21(0:06; 0:76)
�3 0:29(0:09; 0:90) 0:30(0:10; 0:92)
�4 0:39(0:14; 1:13) 0:41(0:14; 1:15)
�5 0:40(0:14; 1:15) 0:42(0:15; 1:19)

The parameter estimates are hardly a¤ected by allowing for a positive value of �. Thus, conclusions
based on the standard case series model appear robust to di¤erering dependence assumptions. In par-
ticular, there is strong evidence of an association between MMR and ITP, particularly in the 15 � 28
day period after vaccination. While there is no compelling evidence of dependence between events within
individuals, the number of events is too small to rule out such dependence conclusively.

7.2 Myocardial infarction and respiratory infections

This example concerns myocardial infarctions (MI) and their association with respiratory tract infections
(RTI), the exposure of interest. The data are a subset of the MI data described in Smeeth et al (2004).
Note that MI increases mortality, which formally violates the assumption that observation is censored
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Figure 3: Distribution of age at MI: (a) �rst episode, (b) second episode.

completely at random. However, Farrington & Whitaker (2006) showed that, for these data, results are
robust to failure of this assumption.
For the purposes of the present analysis, we selected individuals who experienced two MI between

ages 65 and 80 years. These 1051, individuals experienced up to 8 RTI over this age range. Figure 3
shows the distribution of individuals�age at event date, for �rst and second episodes of MI, and Figure
4 shows the distribution of the delay between the �rst and the second MI. The median interval between
the �rst and second MI is 197 days. Figure 5 shows the age distribution of RTIs experienced by the
individuals sampled.

First, we analysed these data as if the two MI episodes for each individual were independent occur-
rences. We applied the standard case series method by �tting a parametric model with �ve 3-years age
groups: 65� 68, 69� 71, 72� 74, 75� 77 and 78� 80 years, and �ve risk periods: 1� 3, 4� 7, 8� 14,
15� 28 and 29� 91 days after every RTI. The estimates of the relative incidence of MI for each post-RTI
risk period, and in the combined risk period 1 � 91 days, are given in Table 14. Second, we used the
bivariate diagonal dependence model (6) with values of � from 1 to 24 months in monthly increments.
The relative incidence estimates (for the 1� 91 day risk period) and the estimates of exp(�) are shown in
Figure 6. Clearly, changing the value of �; does not a¤ect the estimated exposure e¤ect b�; the parameter
of interest, whereas the estimated dependence e¤ect b� varies strongly with �. In the �rst month after
the �rst MI, exp(�) < 1, indicating negative dependence. This may be due to intensive therapy, or to
requiring that MIs should be at least one month apart to qualify as separate episodes. Thereafter there
is a sharp increase of exp(�) to a maximum at 3 months, expb� = 4:53, 95% CI (3:96; 5:18), followed by
a gradual decline to expb� = 2:41, 95% CI (2:06; 2:83) at 2 years. Parameter estimates for two values
of � (91 and 366 days) are given in Table 14. The estimates are very similar to those obtained under
independence. Finally, we estimated the dependence using the conditional model (11). The results are
shown in Figure 7. The results are similar to those presented in Figure 6, though the parameter estimates
are attenuated and the con�dence intervals wider.
The overall conclusion from this analysis is that there is strong dependence within individuals, most

likely resulting from an increased MI rate following �rst event. This appears to peak 3 months after the
�rst event, declining to some constant value. The estimates of � do not appear to be overly sensitive to
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Figure 4: Distribution of the delay between �rst and second MI episodes.
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Figure 6: Full bivariate model: relative incidences associated with RTI (dots) and diagonal dependence
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Figure 7: Conditional model: relative incidences associated with RTI (dots) and diagonal dependence
(squares), with 95% con�dence intervals.

this dependence, though sensitivity to long-term dependence cannot be evaluated. For this reason, it is
advisable to analyse �rst and second MIs separately as well as jointly.

Table 14 Relative incidence of MI by risk period after RTI, for three models
Risk period Model
(days) independent dependent (� = 91 days) dependent (� = 366 days)
1-3 1.88 (1.11, 3.18) 1.93 (1.12, 3.33) 1.94 (1.12, 3.45)
4-7 2.44 (1.63, 3.65) 2.57 (1.71, 3.88) 2.60 (1.72, 3.92)
8-14 1.45 (0.98, 2.16) 1.28 (0.83, 1.99) 1.29 (0.83, 2.00)
15-28 1.08 (0.78, 1.50) 1.17 (0.84, 1.63) 1.17 (0.84, 1.64)
29-91 1.18 (1.00, 1.39) 1.17 (0.99, 1.38) 1.18 (1.00, 1.40)
1-91 1.32 (1.15,1.51) 1.29 (1.13, 1.47) 1.32 (1.15, 1.52)
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8 Discussion

We have extended the self-controlled case series model to allow for a speci�c departure from within-
individual independence between recurrent events. This was achieved by augmenting the model with a
diagonal dependence term, which indicates greater or lesser than expected pairwise clustering of events.
The augmented model may be represented geometrically as a case series model in multiple dimensions,
and was shown to approximate a model in which dependences arise owing to unmeasured time-varying
frailties. The method can be applied to any number of recurrences; a very simple conditional method
is available when no individual has more than two events. All the models we propose may be explored
using standard log-linear modelling techniques.
The primary purpose of the augmented model is to provide a method of testing the within-individual

independence assumption required by the case series method. An evaluation by simulation shows that
the power available is good in small to moderate samples under the assumed higher-dimensional Poisson
model, and when occurence of an event increases the short-term risk of another. In contrast, the power
to detect clustering resulting from time-varying frailties is poor in moderate samples. A fundamental
limitation of the method, and, arguably, of any method based only on cases, is that long-term dependence
cannot be identi�ed: only short-term, or time-varying dependence can be detected.
The estimated exposure e¤ect, which is usually the parameter of primary interest, may be biased

if within-individual dependence is present but ignored. Standard errors are also likely to be under-
estimated. Our simulations have shown that the bias in the point estimates may be substantial when
an event increases the short-term risk of subsequent events; in contrast, when clustering is induced by
time-varying frailties, the bias is very much less except in the most extreme scenarios. Standard errors
are also underestimated, though this e¤ect is relatively small except in extreme scenarios; investigations
in a di¤erent setting have also shown standard errors to be robust to model mis-speci�cation (Hocine et
al, 2006).
A key modelling issue is how to proceed if there is evidence that events are not independent within

individuals. The simplest approach is to limit the analysis to �rst events, provided these are rare, and
undertake a separate analysis of recurrences, with observation period starting at the age of the �rst event,
and a term for short-term dependence as used in our conditional model. Alternatively, our simulations
suggest that allowing for dependence using the augmented model (with age e¤ects) can substantially
reduce bias in the estimated exposure e¤ect (and produce standard errors that are closer to their empirical
values). One exception is when events are clustered owing to time-varying frailties (though the bias in
such a scenario is usually small). This �nding was unexpected, since the frailty model approximates ours,
at least when dependence is weak; closer analysis of this scenario shows that the goodness of �t of the
model is indeed greatly improved, although the parameter estimates are little a¤ected.
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Appendix 1

Suppose that an individual experiences two events at ages t1 and t2 within an observation period (a; b] .
This can be represented as a single point in the subspace Q(2) = f(t; s) 2 (a; b]2; s � tg: The observation
period (a; b] is divided into r + 1 intervals Ai = (si�1; si] corresponding to the exposure and the age
groups where si are the ordred exposure and age cutpoints de�ned as follows:

si; i = 1; :::; r + 1; s0 = a < s1 < s2 < ::: < sr < sr+1 = b:

We use i to index cutpoints on the horizontal axis and j for the vertical axis. The cutpoints determine
a partition of Q(2) into 1

2r(r + 1) squares and rectangles and r + 1 triangles. We denote the area of the
segment with (sj ; si) at its top right-hand corner as Aij . In addition, we use the dependence function
(6), which determines a further subdivision by the line t = s+ �. This line partitions each area Aij into
two, Aij0 the area within t� s > � and Aij1within 0 < t� s � �. The areas Aijk across individuals form
the Dij (with di¤erent meanings for the indices i and j) referred to in Subsection 5.1.
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The values of the Aijk depend on si and sj , and their relation to �. It turns out that there are 8
possible con�gurations, as follows.
Con�guration 1: if sj�1 � si > � then Aij1 = (si � si�1)� (sj � sj�1) and Aij0 = 0:
Con�guration 2: if 0 � sj�1�si � � and sj�si > � and sj�1�si�1 > � then Aij1 = 1

2 (��sj�1+si)
2

and Aij0 = (si � si�1)� (sj � sj�1)�Aij1:
Con�guration 3: if 0 � sj�1 � si � � and sj � si � � and sj�1 � si�1 > � then Aij0 = (sj � sj�1)�

(sj�1 � si�1 � �) + 1
2 (sj � sj�1)

2 and Aij1 = (si � si�1)� (sj � sj�1)�Aij0:
Con�guration 4: if 0 � sj�1 � si � � and sj � si > � and sj�1 � si�1 � � then Aij0 = (si � si�1)�

(sj � si � �) + 1
2 (si � si�1)

2 and Aij1 = (si � si�1)� (sj � sj�1)�Aij0:
Con�guration 5: if 0 � sj�1 � si � � and sj � si � � and sj�1 � si�1 � � and sj � si�1 > � then

Aij0 =
1
2 (sj � si�1 � �)

2 and Aij1 = (si � si�1)� (sj � sj�1)�Aij0:
Con�guration 6: if 0 � sj�1�si � � and sj�si�1 � � then Aij0 = 0 and Aij1 = (si�si�1)�(sj�sj�1):
Con�guration 7: if si = sj and si�si�1 > � thenAij0 = 1

2 (si�si�1��)
2 andAij1 = 1

2 (si�si�1)
2�Aij0:

Con�guration 8: if si = sj and si � si�1 � � then Aij0 = 0 and Aij1 = 1
2 (si � si�1)

2:

Appendix 2

In this appendix we prove the identity (10). The log-likelihood contribution of an individual with k events
may be written:

lki (�; �; �; ti1; :::; tik) =
kX
j=1

log �i(tij) + log
2

k(k � 1)
X
r<s

H2(tr; ts) (12)

� log
Z

Qi(k)

�i(t1):::�i(tk)Hk(t1; :::; tk)dtk:::dt1:

Since Hk(t1; :::; tk) has the form given in (8) and is symmetric, the �nal integral isZ
Qi(k)

�i(t1):::�i(tk)Hk(t1; :::; tk)dtk:::dt1 =
1

k!

Z
(ai;bi]k

�i(t1):::�i(tk)Hk(t1; :::; tk)dtk:::dt1

=
2

k!k(k � 1) �

0B@X
r<s

Z
(ai;bi]2

�i(tr)�i(ts)H2(tr; ts)dtsdtr

1CA
�

0@ biZ
ai

�i(s)ds

1Ak�2

=
2

k!

Z
Qi(2)

�i(tr)�i(ts)H2(tr; ts)dtsdtr �

0@ biZ
ai

�i(s)ds

1Ak�2

:
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Hence, the log-likelihood contribution, up to a constant, is:

lki (�; �; �; ti1; :::; tik) =
kX
j=1

log �i(tij) + log
X
r<s

H2(tr; ts) (13)

� log
Z

Qi(2)

�i(tr)�i(ts)H2(tr; ts)dtsdtr � (k � 2) log
biZ
ai

�i(s)ds:

The right-hand side of the identity (10) may be written:

k � 2
k

8<:
kX
j=1

log �i(tij)� k log
biZ
ai

�i(t)dt

9=; (14)

+
2

k(k � 1)

(X
r<s

flog �i(tir) + log �i(tis)g

+
X
r<s

logH2(tir; tis)�
k(k � 1)

2
log

Z
Qi(2)

�i(t)�i(s)H2(t; s)dsdt

9>=>;
+ log

(
2

k(k � 1)
X
r<s

H2(tir; tis)

)
� 2

k(k � 1)
X
r<s

logH2(tr; ts):

Now, X
r<s

flog �i(tir) + log �i(tis)g = (k � 1)
kX
j=1

log �i(tij);

and simpli�cation of (14) results in the same expression as (13), up to an irrelevant constant.

24


