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Abstract

Unusual clusters of disease must be detected rapidly for effective public health
interventions to be introduced. Over the past decade there has been a surge in interest
in statistical methods for the early detection of infectious disease outbreaks. This
growth in interest has given rise to much new methodological work, ranging across the
spectrum of statistical methods. This paper presents a comprehensive review of the
statistical approaches that have been proposed. Applications to both laboratory and

syndromic surveillance data are provided to illustrate the various methods.
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1 Setting the scene

The past decade has witnessed a large increase in research activity on the statistical issues
related to prospective detection of outbreaks of infectious diseases. The major challenges
in this expanding field derive from its focus on prospective detection, namely, detection of
outbreaks as they arise, in a sufficiently timely fashion to enable effective control measures
to be taken. The growth in this area, sometimes now referred to as biosurveillance (e.g.,
Shmueli and Burkom 2010), has been so rapid as to spawn conferences and a learned society,
the International Society for Disease Surveillance (http://www.syndromic.org), founded
in 2005.

Outbreak investigations go back at least to John Snow’s iconic removal of the handle of
London’s Broad Street pump during the 1854 cholera epidemic. In the modern era, follow-
ing a trend apparent in all areas of epidemiology, statistical methods have come to the fore
in outbreak detection and control. For several decades (see Tillett and Spencer (1982) for
an early example), statistical techniques have been used to provide early warnings of out-
breaks, supplementing more traditional surveillance based on a network of alert public health
physicians. Since the early 1990s, the increasingly widespread availability of computerised
databases which can be interrogated for evidence of emerging outbreaks has greatly facili-
tated the use of statistical outbreak detection, and has witnessed the creation of automated
detection systems to process data on very large numbers of infections at frequent time in-
tervals. Since the turn of the twenty-first century, two factors have combined to give further
impetus to developments in this area: new concerns about the possible threat of large-scale
bioterrorism, and heightened public and media awareness about emerging or re-emerging
infections, including hospital-acquired infections such as methicillin-resistant Staphylococcus
aureus (MRSA) and Clostridium difficile, and global epidemics such as severe acute respira-
tory syndrome (SARS) in 2002-2003 and the 2009 HIN1 swine influenza pandemic. Similar
statistical surveillance methods have also been used for the early detection of new antimi-
crobial resistant strains of infectious pathogens.

Under these influences, a new focus has emerged, namely the surveillance of syndromes,
which complements the previous emphasis on surveillance of infections. Thus, much of the

new literature in the field relates to syndromic surveillance, which exploits more diverse



sources of data, such as calls to telephone or internet helplines, medical consultations, and
pharmacy sales, that are believed to reflect in more timely fashion changes in behaviour that
may stem from a large-scale bioterrorist incident. So far, no such incident has occurred.
However, the need to detect outbreaks from more mundane sources - such as contaminated
foodstuffs, breakdowns in water treatment plants, low vaccine efficacy, or imported infec-
tions - remains, and has led to further developments, as witnessed by the inclusion of routine
methods for statistical outbreak detection in laboratory-based surveillance systems in several
European countries (Hulth et al. 2010).

Both syndromic and laboratory-based prospective surveillance methods for outbreak de-
tection pose diverse statistical challenges, relating to data sources, evaluation, multiplicity
control, and follow-up, as well as the statistical techniques used to detect anomalies in data
series. Periodic reviews of these methods, with varying emphases, have appeared in the
statistical literature, notably Sonesson and Bock (2003), Farrington and Andrews (2004),
Buckeridge et al. (2005) and Shmueli and Burkom (2010). There have also been numer-
ous developments in related fields such as pharmacovigilance and institutional performance
monitoring.

The aim of the present review is to provide an account of the statistical methodologies
that have been proposed for detecting anomalies in data series, specifically in the context
of prospective outbreak detection. These methods are used to identify unusual patterns in
data, which may result from infectious disease outbreaks. Prospective detection involves
identifying anomalies as they arise, so as to enable control measures to be implemented, if
deemed appropriate.

Our aim is not to cover the entire range of statistical issues or data sources relevant to
outbreak detection (Fienberg and Shmueli 2005) - comprehensive coverage is probably no
longer possible in a single review paper. Nor do we seek to document all the variants of each
methodological approach, as developed in response to particular circumstances. Rather, we
focus entirely on broad classes of statistical methods for detecting aberrations. Our moti-
vation for doing so is to inform a detailed study of some of the outbreak detection systems
used in the UK. Surveillance for health care-associated infections, such as surgical-site in-
fections or ventilator-associated pneumonia, is outside the remit of this review, although it

is mentioned in places, as some aspects of health-care surveillance overlap disease outbreak



detection. Much health care surveillance, however, addresses different aims, such as the
monitoring of hospital performance and the evaluation of quality indicators. The paper is
structured in the following Sections: regression techniques (Section 2), time series method-
ology (Section 3), methods inspired by statistical process control (Section 4), methods incor-
porating spatial information (Section 5), and multivariate outbreak detection (Section 6).
We stress that this classification is chosen only to help our presentation of material, and is
not based on any rigorous taxonomy. Several methods could be classified under more than
one heading. We include a brief review of evaluation methodologies in Section 7. Concluding

comments are given in Section 8.

2 Regression techniques

Regression methods of outbreak detection have been widely used, both for detecting out-
breaks in surveillance systems based on laboratory reports and notified infections, and for
syndromic surveillance. Their application differs from other areas of biostatistics, in that
they are used primarily to obtain standardized residuals. The distribution of these residuals
in the absence of an outbreak is then used to determine a threshold value.

Regression methods can be regarded as extending the Shewhart chart (Shewhart 1931), in
which a process variable 3, which is normally distributed N (u, 0?) when in control is moni-
tored by tracking the values of y; — u, an alert being declared when |y; — p| > ko for some
pre-specified value of k.

When applied to outbreak detection, only the upper control limit u+ ko is usually of interest.
Regression methods generalize the Shewhart chart in three respects: the in-control mean p
and possibly the in-control standard deviation o vary with time; both these quantities must
be estimated from historical data; and the distribution of y; may not be normal.

The performance of regression outbreak detection methods may be expected to reflect the
performance of Shewhart charts: applied to an observation at time ¢, they are effective at

detecting large outbreaks starting at time ¢, but rather less effective at detecting more grad-

! Throughout the paper, random variables and their realizations are not distinguished by using uppercase
and lowercase letters. This is because in the multivariate case the reader will be more concerned about
whether a vector or matrix of data is involved than with the distinction between random variables and
their observed values.



ual outbreaks starting at some time earlier than ¢.

In Subsection 2.1 and Subsection 2.2 parametric and semiparametric regression methods are
described. Most regression methods are based on a threshold value, above which reports are
declared aberrant. How these thresholds may be obtained is explained in Subsection 2.3,

whereas in Subsection 2.4 non-thresholding methods are considered.

2.1 Parametric models

Perhaps the simplest regression model for outbreak detection is that described by Stroup
et al. (1989), in which the expected disease count at month ¢, E(y;), is calculated as the
mean of observed counts at months t — 1,¢,£ + 1 over some pre-specified number of years.
This ensures that seasonal effects are automatically adjusted for by design rather than by
explicit modelling, thus providing some element of robustness. However, this model does not
incorporate time trends. Stroup et al. (1989) apply this model, using normal errors, to data
on notifiable infections. The results are summarized in a simple graphic published routinely
in Morbidity and Mortality Weekly Report of the Centers for Disease Control and Prevention
(CDC) (Stroup et al. 1993).
A commonly used fully parametric outbreak detection regression model is based on that of
Serfling (1963), who modelled historical baselines using a trigonometric function with linear
trend of the form:

E(y;) = p+ ot + Z {0 sin(w;t) + ~; cos(w;t) } (1)

i=1

and normal errors with constant variance. Serfling (1963) used the regression equation
(1) to estimate excess mortality due to influenza based on weekly data on pneumonia-
influenza deaths. This model has subsequently been used to detect the onset of epidemics
of influenza (Costagliola et al. 1991, 1994). An automated version of the Serfling model
with cubic trend and three trigonometric terms (i.e. r = 3), with model selection based
on the Akaike information criterion (AIC), has been developed for prospective and ret-
rospective surveillance, and is available as a web-based application (Pelat et al. 2007) at
http://www.u707.jussieu.fr/periodic_regression. Figure 1 shows a sample output
screen from the system of Pelat et al. (2007), displaying the result of a prospective anal-

ysis of weekly counts of Salmonella enteritidis Phage type (PT) 4 in England, Wales and



Northern Ireland from 2000 to 2009 and model-based extrapolation for the year 2010 with

an epidemic threshold.  The user has first to select a subset of the whole data series (called
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Figure 1: Sample output screen from the system of Pelat et al. (2007) (see text for explana-
tion).

‘training period’) which is used to estimate the baseline level. In Figure 1 the training pe-
riod consists of the years 2006 to 2009. Then the 20% highest values in the training data
are excluded to account for past outbreaks (default value: 15%). A Serfling-type regression
equation is used to model the baseline. A threshold is obtained by taking an upper percentile
for the prediction distribution, here the upper 90th percentile is chosen. The system declares
an aberration as soon as an observation exceeds this threshold.

When data are sparse, the normal errors regression model is inappropriate. Parker (1989)
instead used Poisson regression with logarithmic link to monitor the mortality associated
with abortions. Such a model can be elaborated at will; Jackson et al. (2007) describe a
Poisson log-linear model for syndromic surveillance with terms for day of the week, month,

linear time trend, and holidays. If denominator population data are available, binomial lo-



gistic models can be fitted in much the same way, the flexibility of the generalised linear
model (GLM) approach allowing further extensions to include random effects, for example
to represent spatial variation (cf. Section 5).

The log-linear regression model of Farrington et al. (1996), like that of Stroup et al. (1989),
adjusts for seasonal effects by design, and explicitly allows for linear trends. Since much

surveillance data exhibiting considerable overdispersion, the model is quasi-Poisson with

E(yt) = Mt log(ﬂt) =a+ ﬂt ) Var<yt) = ¢Nt ) (2)

where ¢ is the dispersion parameter. To try to reduce the influence of past outbreaks,
baseline values with high residuals are given lower weights in the regression. Estimates of
model parameters in (2) are obtained by a quasi-likelihood method.

The method of Farrington et al. (1996) is used routinely by the Health Protection Agency
(HPA) to detect outbreaks in laboratory-based surveillance data in England and Wales, and
is referred to as the Lab-Base exceedance system hereafter. Elaborations of the Lab-Base
exceedance system have been described for use with laboratory data in Scotland (McCabe

et al. 2003) and The Netherlands (Widdowson et al. 2003).

2.2 Semiparametric models

All the regression models so far described use a parametric model to represent the historical
data. A contrasting strategy is to use a non-parametric model for the historical baseline,
as widely used in monitoring mortality and other effects in environmental time series (Do-
minici et al. 2003). The SPOT (Salmonella Potential Outbreak Targeting) system described
by Stern and Lightfoot (1999) uses a smoothing method to obtain baselines and standard
deviation. Five years’ historical data are first smoothed, and the baseline value for each
time point in the yearly cycle is taken to be the median of the five smoothed values. The
standard deviation is obtained by smoothing the residuals (raw values minus smooth values).
This system implicitly assumes Gaussian errors by using an alarm threshold of two standard
deviations above the baseline (with a filter for low counts).

Wieland et al. (2007) proposed to model both the mean y; and the variance o? at each time
point ¢, using separate generalized additive models for both quantities. First, a generalized

additive model (GAM) is fitted to historical data to obtain fi;. Then a second GAM is



fitted to the residuals from the firss GAM in order to obtain 67. The threshold is taken as
ji; + ko, for some choice of k. The smooth terms in the GAMs were based on Gaussian kernel
smoothers, with bandwidth chosen so as to minimize the mean predictive squared error on
the historical data.

Mean-regression methods lack robustness to the presence of outbreaks in the baseline val-
ues, which bias ji; upwards and hence reduce the sensitivity of the system. Sensitivity is
the probability that a true outbreak is detected: a high sensitivity is desirable for outbreaks
of public health importance. Serfling (1963) identified past outbreaks by visual inspection
and omitted them from the model; this will tend to bias fi; downwards and thus reduce the
specificity. Specificity is the probability that a time period without an outbreak is correctly
identified as such. The complement of this, 1 - specificity, must be kept low to avoid user
fatigue and loss of credibility. The Lab-Base exceedance system (Farrington et al. 1996)
downweights outliers in the baselines, but this reduces rather than eliminates the bias, as do
non-parametric smoothing techniques.

An alternative is to use a wavelet transform of the baseline values to account for low frequency
variation due to trends and seasonality, while remaining robust to high frequency variation
resulting from past outbreaks or other artefacts, such as holiday dips. This approach was
proposed by Zhang et al. (2003), whose simple and hence easily automated Wavelet-based
Anomaly Detector (WAD) subtracts a baseline value obtained using the wavelet transform
and bases thresholds on the distribution of the residuals (see also Wieland et al. 2007). More
complex wavelet-based methods, which may also be applied in a time series framework, were

used by Goldenberg et al. (2002) and discussed in Shmueli (2005).

2.3 Obtaining the thresholds

Most regression-based methods specify a model for the mean at time ¢, and declare an alarm
at time ¢ if the observed value lies above some threshold determined by the sample statistics
and the quantiles of a suitable distribution, for example the normal, Poisson or negative
binomial. A commonly used procedure for large counts is to estimate the baseline value fi;

and the process variance at time ¢, 67, and, assuming normal errors, to define the upper



threshold by
uy = fiy + koy

where in many applications it is further assumed that the process variance is constant, o2 =
o2. A more accurate approach is to base the threshold on an upper 100(1 — )% prediction
limit which takes account both of the process variance and the uncertainty in the estimation
of the baseline value. Thus, for example, the Poisson model of Parker (1989) combines the
estimated process variance fi; with the regression error variance var(ji) = j?var(log(ji)),

obtained using the delta method, to obtain the total variance

varp(y) = {1 + fvar(log(f))} -

The quasi-Poisson method of Farrington et al. (1996) uses a similar approach. Clearly,
regression methods do not account for serial correlation in the baselines. Kafadar and Stroup
(1992) investigated bootstrap and jacknife procedures to estimate var(ji;) but suggested that
such adjustments are inadvisable unless the autocorrelation structure is known or can be well
estimated.

A further problem with thresholds of the form p; + ko is that the normal theory upon which
they are based is usually inappropriate, especially when the background means p; are small.
The accuracy of the threshold - namely the extent to which P(y; > u;) matches the nominal
100a% level upon it is based - will usually vary with pu;, hence the sensitivity and specificity
will vary with ;. This is undesirable for systems designed to monitor several different data
series with a wide range of expected values.

Consequently, some detection algorithms apply a transformation to approximate normality,
or approximate symmetry, derive the threshold on the transformed scale, and transform the
threshold back to the original scale. The quasi-Poisson method of Farrington et al. (1996)
uses the 2/3 power transformation, which yields approximate symmetry for Poisson data.
The upper threshold is defined as

. N 1/2
<¢t#t + Var(#t)>

3/2

up = fiy § 1+ 524

3 i

where z, is the 100(1 — «)-percentile of the standard normal distribution. The rationale

is that, for rare organisms, ¢ ~ 1 and counts are distributed approximately Poisson, while



for frequent organisms normal approximations are valid. There are many possibilities for
obtaining normal approximation to the error distribution: for example Cooper et al. (2004)

use a sinh-based transformation applied to a binomial proportion to achieve a similar result.

2.4 Non-thresholding methods

Most regression methods for outbreak detection use a threshold u; at time ¢ to determine
whether the current observation y; is aberrant. An alternative is to test the null hypothesis
that y; belongs to the same distribution as the baseline values; Parker (1989) discusses
various tests, including the likelihood ratio test, for Poisson data.

Other criteria for detecting outbreaks may be specified, based on the qualitative features of
an outbreak, such as the start of an outbreak, at which point a previously stationary time
series begins to increase, and the peak of an outbreak, at which the counts stop increasing and
start decreasing (Andersson et al. 2008). Bock et al. (2008) describe methods for identifying
the peak of an epidemic, and Frisén and Andersson (2009) and Frisén et al. (2010a, 2009)
describe parametric and semi-parametric regression methods for detecting the onset of an
epidemic.

The semiparametric model to detect epidemic onset assumes that the disease counts belong
to a specified distribution within the regular exponential family. Under the semiparametric
version of the model, it is assumed that the disease counts ys up to time ¢ (s < t) either
have constant mean (the null hypothesis), or increase monotonically from time ¢t = d where
d is known (the alternative hypothesis). For Poisson counts that increase from the start of

the series (d = 1), the likelihood ratio statistic is
t AL\ Ys
LR = (’“‘—0) , (3)

where (i is the maximum likelihood estimator (MLE) of the process mean at time s under
the null hypothesis, and ji! is the MLE under the alternative hypothesis. An alert is declared
if LR > k for some pre-specified value k. Frisén et al. (2010a, 2009) describe applications to
outbreaks of influenza and tularaemia in Sweden. Computer software for this surveillance
method is available (http://www.statistics.gu.se/surveillance), called ‘Outbreak De-

tection P’, as both a SAS program and as a VBA (Visual Basic for Applications) macro in



10

Microsoft Excel for Windows. Figure 2 shows the ‘alarm graph’ obtained from an analysis of
the weekly counts of Salmonella enteritidis PT 4 in England, Wales and Northern Ireland in
the year 2009 by means of the ‘Outbreak Detection P’ program. The likelihood ratio (alarm)
statistic (3) exceeds the warning limit (100) for the first time in week 24 and the alarm limit

(5000) in week 25. The semiparametric method by Frisén and Andersson (2009) is

10000
|

1000

—— Alarm statistic
- = Alarm limit
- Warning limit

OutbreakP(week)
10
|

10

Week

Figure 2: Sample alarm graph obtained from the ‘Outbreak Detection P’ program (see text
for explanation).

also implemented in the R software package surveillance (Hohle 2007; Hohle and Mazick
2010). The surveillance package provides interfaces of several well-known procedures for
prospective outbreak detection, among others the ones of Stroup et al. (1989), Farrington
et al. (1996) and the system used by the Robert Koch Institute, Germany (Hulth et al. 2010).

For a complete overview of its content, see http://surveillance.r-forge.r-project.org.
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3 Time series methodology

Unlike most regression techniques, time series methods acknowledge the correlation struc-
ture of the data. For syndromic and laboratory data which are generally collected daily
or weekly the principal correlations are autocorrelations at a lag of 1 time period (serial
correlation) and correlations associated with the seasonal pattern in the data, which can be
a combination of weekly or yearly seasonality. When time series data are available over a
relatively long period of time, it is important to estimate the trend and seasonal components
as the autocorrelation structure can only be identified using a stationary time series. Meth-
ods for estimating the trend and seasonal effects are described in Subsection 3.1. Failure
to properly account for the autocorrelation will result in a misspecified model which may
have bias in the estimated effects and prediction intervals which are too narrow, leading to a
larger number of potential exceptions. The Box-Jenkins type methodology was designed to
take the autocorrelation structure into account. These models are considered in Subsection
3.2. Much statistical innovation in the field of outbreak detection has tended towards time
series models of increasing complexity, including Bayesian and hidden Markov models. The

latter are discussed in Subsection 3.3.

3.1 Trend and seasonal estimation

With outbreak surveillance, the estimation of trend is best accomplished through a relatively
simple procedure that is flexible and does not make any great demands on intervention by
the operator. For time series, where there is a considerable amount of historical data and
where the seasonal pattern is regular, a Serfling model (Serfling 1963) based upon sines and
cosines may be used to estimate the trend and seasonal component.

Two common time series methods used in surveillance are simple exponential smoothing
(e.g., Healy 1983; Ngo et al. 1996) and the Holt-Winters procedure (Holt 1957; Winters
1960). Simple exponential smoothing assures the data have no trend or seasonality. It forms
predictions by taking a weighted average of past observations, where the weights decrease
exponentially the further they are into the past (cf. Section 4).

The Holt-Winters technique is a generalization of simple exponential smoothing that allows

for local trend and seasonal factors. Thus, for a series with multiplicative seasonal variation
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of period p (e.g. for monthly observation p = 12), the h-step prediction function for the
Holt-Winters model is given by (Chatfield and Yar 1988):

Yean = (ar + hbt)st—p-i-h (h=1,...,p), (4)

where a; is the overall average level of the series, b; represents the trend and s; represents

the seasonal component, given by

@ = a% +(1—a)(as +bii) | (5)
by = PBlag—ap1)+ (1= B)b1 , (6)
se= vt 1=y (7)

There are analogous formulae for additive seasonal variation. The smoothing constants «,
Band v (0 < a, 3,7 < 1) in (5)—(7) can be estimated by minimizing the sum of squares of
the one-step ahead prediction errors.

Holt-Winters is an extremely flexible method for estimating trend and has been used in many
surveillance systems. It has performed well in many forecasting competitions in comparison
to other more complex methods (Chatfield and Yar 1988). In syndromic surveillance systems
it has been used to model outpatient attendance, in comparison to adaptive (using a moving
baseline window) and non-adaptive regression models (Burkom et al. 2007), and found to
provide a better fit to the data. It has also been used to account for the effects of temporal
autocorrelation and spatial correlation when modelling calls to NHS24 and laboratory reports

(Wagner 2010).

3.2 ARIMA and INAR models

Autoregressive integrated moving average (ARIMA) models (Box and Jenkins 1970) have
been used for detecting outbreaks of infectious disease (e.g., Choi 1981; Helfenstein 1986;
Reis and Mandl 2003; Watier et al. 1991). Fitting an ARIMA model requires the time series
to be stationary. As much syndromic and laboratory data are likely to have seasonal and
trend components it is necessary to remove these components from the original data before
estimating the autocorrelation. Furthermore, the statistical testing procedure is based upon
the normal distribution and this will really only be valid for infections or syndromes which

occur frequently. When using outbreak surveillance for relatively rare events, or for more
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common events in smaller areas, then integer-valued methods may be more appropriate.
The integer-valued autoregressive (INAR) model (e.g., Weif§ 2009) is based upon the convo-

lution operator o (Steutel and van Harn 1979), where

aox:Zyk , (8)
k=1

and the y; are independent and identically distributed Bernoulli random variables with
probability P(yx, = 1) = « and z is a non-negative discrete random variable. Using (8), an

INAR model of order p, denoted by INAR(p), can be defined as

p
xtzzaioxt—i"‘et ; 9)
i=1

where €; is a (non-negative) random shock. It follows from (9) that an INAR(1) model is:

Ty = (1 OTp_1+ € (10)

= nty+t.. +Ys, T .

The model (10) states that the number of new cases in the interval (¢t — 1,¢| is made up of
two components - the x;_; cases transmit the infection independently with probability oy
and, as a consequence, » Yy, new cases arise, and a random number ¢, of new cases are gen-
erated via independent sources. Parameter estimates may be obtained using, for example,
the Yule-Walker estimation technique.

When fitting ARIMA and INAR models to meningococcal incidence in the Montreal region
of Canada (Cardinal et al. 1999), INAR(5) and AR(5) models were required for data aggre-
gated in thirteen 4 week periods each year, from 1986 to 1993. There was no evidence of a
trend or seasonality. In Scotland, using daily data on calls to NHS24 about vomiting there
was evidence of a weekly pattern and a trend (Wagner 2010). The data were best fitted by
an AR(6) model on a seasonally differenced series. ARIMA models were used to describe
the daily visits to emergency departments at a hospital in Boston over a period of 10 years
from 1992 (Reis and Mandl 2003) and an ARMA(2,1) model was required for total visits,
while an ARMA(1,1) model was required for respiratory visits.

An extensive investigation of the use of ARIMA modelling, in comparison to statistical pro-
cess control methods (cf. Section 4) has been carried out (Williamson and Weatherby Hudson

1999). They found that ARIMA modelling was unable to model 8 out of 17 syndrome time
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series because of non-stationarity, partly arising from sparse data. Furthermore each series
had to be investigated separately. For the series which were successfully modelled, one step
ahead forecasts were satisfactory for forecasts up to 3 years in the future though better fore-
casts were obtained using continuously updated models.

In a syndromic-based detection approach, Reis and Mandl (2003) analyzed health care uti-
lization patterns by a two-step time series modelling approach. A trimmed-mean seasonal
model was used to capture both the yearly and weekly trends in daily utilization rates. The
residuals from the trimmed-mean seasonal model were then fitted by an ARIMA model. An
AR(6) model combined with a Serfling model with indicators variables for weekends and hol-
idays was used to model attendance at ambulatory care centres for influenza like symptoms
(Miller et al. 2003).

In these illustrations, the traditional ARIMA models require a relatively large number of pa-
rameters for the autocorrelation. Furthermore, a model the results for one syndrome is not
easily adapted for use with another syndrome, so the whole process of model identification
must be carried out each time, making the process difficult to automate.

With each new observation the parameters of the ARIMA model should be re-estimated. It
is not clear how this can be achieved automatically, since model identification often relies
on looking at residual plots. A practical approach may be to keep using the same model
for a period of time, say one month for daily data and only refit the model each month.
This might be practical for any one series but not for many. Thus it is likely that ARIMA
methods might be better suited to the retrospective analysis of time series data, rather than
prospective use within an outbreak surveillance system.

Heisterkamp et al. (2006) proposed the use of a so-called hierarchical time series model,
which does not require a long time series of data for parameter estimation. The observed
counts are assumed to be Poisson distributed, whereas an unobserved process is assumed
for the time trend in the expected number of cases. The models for the unobserved process
range from a completely stationary process over time, to an autoregressive model of order
3. This provides a flexible model for the trend in a times series. Likelihood ratio tests are
used to discriminate between the different models in the hierarchy. It is claimed that the hi-
erarchical time series model is able to detect outbreaks faster than the Lab-Base exceedance

system (Heisterkamp et al. 2006).
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3.3 Bayesian and hidden Markov models

Le Strat and Carrat (1999) proposed the use of a hidden Markov model (HMM) (e.g.,
Cappé et al. 2005) for monitoring epidemiological data. The basic idea is to segment the
time series of disease counts into an epidemic and non-epidemic phase. In the HMM of
Le Strat and Carrat (1999) each observed y; (t = 1,...,n) is associated with a latent variable
z; € {0, 1} that determines the conditional distribution of y;. That is, y;|2z; ~ fr(ys; 0x), where
k € {0,1}, fr is a pre-specified density (e.g. Gaussian or Poisson) and 6, are parameters
to be estimated. The unobserved state space, z; (t = 1,...,n) is modelled by a two-state

homogeneous Markov chain of order 1 with stationary transition probabilities
= Pz =z = k),

where k,[ € {0,1} denote the two states of z; (1: epidemic; 0: non-epidemic). For example,
po1 is the probability of switching from the non-epidemic to the epidemic state. Note that
in this Markov-dependent mixture model, y; is conditionally independent of all the remain-
ing variables, given z;. Le Strat and Carrat (1999) also considered HMMs with more than
two hidden states and performed model selection using the Bayesian information criterion
(BIC). Parameter estimates were obtained by means of a modified version of the EM algo-
rithm (Dempster et al. 1977). Model extensions to account for time trends and seasonality
were proposed using the cyclic regression function of Serfling (1963). An on-line version of
the retrospective approach of Le Strat and Carrat (1999) is implemented in the R package
surveillance (Hohle 2007; Hohle and Mazick 2010).

Rath et al. (2003) and Madigan (2005) presented further exploration of HMM for surveil-
lance, the latter incorporating the Bayesian perspective, which requires prior distributions
to be specified for model parameters. Markov Chain Monte Carlo (MCMC) methods were
used for parameter estimation.

In another Bayesian approach, Martinez-Beneito et al. (2008) proposed a Markov switching
model (e.g., Cappé et al. 2005) for prospective surveillance of weekly influenza incidence
rates. In a Markov switching model the observed variables depend not only on the hidden
state variables but also on the lagged observable variables. This setting makes the Markov
switching model more suitable for time-series analysis than HMM. In Martinez-Beneito et al.

(2008) the conditional distribution of the first-order difference series, formed by the differ-
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ences between rates in consecutive weeks, is modelled either as a first-order autoregressive
process or as a Gaussian white noise process, depending on whether the system is in an
epidemic or non-epidemic phase. Let yt{ j = Yt+1, — Yr; denote the first-order difference that
corresponds to the difference between the rates in weeks ¢+ 1 and ¢ in season j. Conditional

on the value of z,

yij|21 =0 ~ 0 ‘70 )

yij|zl =1 ~ 0,02 )

y§7j|zt:0 ~ O,a ) t>2

N{
N(
N(
N

yila=1 ~ Npyly,01;) , t>2.

The advantage of using Markov switching models is that the differenced series is detrended ,
enabling autoregressive modelling to be used to analyse the data. The methodology described
in Martinez-Beneito et al. (2008) is implemented in a web-based application called FluDetWeb
(Conesa et al. 2009), which is used for the early detection of the onset of influenza epidemics.
To illustrate this approach, we performed a prospective analysis using influenza-like illness
(ILI) data from the Valencian Sentinel Network (VSN). The data set consists of eleven time
series formed by the weekly ILI incidence rates (per 100,000 inhabitants in the Communitat
Valenciana, Spain) during the seasons from 1996-1997 and 2006-2007. The data set can be
downloaded via http://www.geeitema.org/doc/meviepi/influenza.html. An influenza
season lasts 30 weeks (from the 42nd week of one year to the 19th week of the following
year). In Figure 3, the weekly ILI incidence rates for the seasons 2005-2006 and 2006-2007
are compared.  The black dots in Figure 3 (ii) indicate that the posterior probability of
being in an epidemic phase exceeded 0.5 in week 15, 16 and 17 of the 2006-2007 influenza
season. The posterior probabilities were found by means of the application FluDetWeb.
Conesa et al. (2010) introduced a framework of models with the idea of using them on any
kind of surveillance data. In particular, the process of the observed cases is modelled via
a Bayesian hierarchical Poisson model in which the intensity parameter is a function of the
incidence rate. Different options for modelling the mean of the rates are described, including
the option of modelling the mean at each phase as autoregressive processes of order 0, 1 and
2 (David Conesa 2010, personal communication).

Lu et al. (2010) developed a Markov switching model with jumps to handle the effect caused
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Figure 3: Comparison of weekly ILI incidence rates in the Communitat Valenciana, Spain,
between the 2005-2006 (i) and 2006-2007 (ii) influenza season.

by past outbreaks. This model utilizes two additional hidden state variables in each period.
The first hidden state variable models the disease outbreak state, and the second hidden
state variable models the presence of extreme values. If an extreme value exists, the third
hidden state variable represents the size of the extreme value. This is done to absorb any
effect caused by sporadic extreme values in the training data.

In Cowling et al. (2006), dynamic linear models (West and Harrison 1997) were used as an
approach to the early detection of the onset of the influenza epidemic period that requires
only few weeks of baseline data.

For retrospective detection, Held et al. (2006b) proposed a two-component model where
the counts are viewed as the sum of a ‘parameter-driven’ (endemic) and an ‘observation-
driven’ (epidemic) component. The model for the parameter-driven component is a Poisson

or negative binomial regression model. The observation-driven component is modeled with



18

an autoregressive parameter. Model estimates are obtained through Bayesian inference via
MCMC techniques. The retrospective approach of Held et al. (2006b) can be used in a
prospective setting.

The above models have clear similarities in that they are designed to monitor a system
that can exist in two states, where the time of the change from one state to another is
unknown. The models can be generalized to three or more states but, in terms of their
utility for outbreak surveillance, the need for more than two states is questionable, as the
main aim is to detect a change. The main differences among the models is in their methods
of modelling trend, seasonality and autocorrelation. For most of these models the simplest
method of estimating the parameters is through Bayesian MCMC. While this is feasible for
one infection or syndrome, computation time may present difficulties for surveillance with

many endpoints where the models require daily updating.

4 Methods inspired by statistical process control

The methods of statistical process control (e.g., Montgomery 2009; Oakland 2008) have a
long history of application to problems in public health surveillance (Woodall 2006). Sev-
eral proposed approaches for the on-line detection of outbreaks of infectious diseases are
directly inspired by, or related to, methods of statistical process control. This is not sur-
prising because the problem of detecting unusual clusters of diseases in epidemiological data
prospectively is similar to that of detecting aberrances in industrial production processes as
they arise. The main tools for tracking the characteristics of a production process over time
are control charts. These are discussed in Subsection 4.1. In Subsection 4.2 and Subsection
4.3, further methods are considered which share a flavor of the statistical process control

methodology, namely temporal scan statistics and methods based on the time to failure.

4.1 Control charts

The first control chart was proposed by Shewhart (1931) (cf. Section 2). The Shewhart
chart only utilizes information about the last time point. Later, Page (1954) and Roberts
(1959) derived control charts with memory, the cumulative sum (CUSUM) and exponentially
weighted moving average (EWMA) control chart, respectively. To start with the former,
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let {y;,t = 1,2,...} denote the time series of the counts being monitored. Assuming that
yr ~ N (e, 02), the one-sided (standardized) Gaussian CUSUM at time ¢ is defined iteratively
by

C, = max {O,C’t_1+ <yt_”t —k)} , (11)

Ot

where Cy = 0 and k£ > 0 is a constant that depends on the aberration size of interest. It is
often chosen to be 1/2 (Rogerson and Yamada 2004b). The baselines u; can be calculated
from counts in comparable periods in previous years. These counts are also used to estimate
the standard deviation ;. In the absence of any systematic departure from the expected
values pi;, (11) tends to remain at or close to zero. If C; > h, where h is a specified threshold
value, the process is declared to be out-of-control. Usually, the CUSUM is then reset to zero
and the process starts again. There are many variants of this basic procedure, though. For
example, one system restarts the process with the CUSUM set to half the alerting thresh-
old, to increase sensitivity to early signals (Lucas and Crosier 2000). Methods based on the
CUSUM formula are implemented in the Early Aberration Reporting System (EARS) of the
CDC, which is used throughout the USA as a syndromic surveillance system (Hutwagner
et al. 2003).

Figure 4 (ii) shows the CUSUM for Salmonella enteritidis in England, Wales and North-
ern Ireland in the year 2009. An outbreak from the 28th week onwards is detected by the
CUSUM (11). The values in Figure 4 (i) are the weekly counts from the previous years 2000
to 2008 which were used to calculate p; and ;.  The threshold h was chosen on the basis
of a predetermined acceptable value for the in-control average run length ARLy, i.e., the
average time between alerts when there is no outbreak. The reciprocal of the ARLg is the
false positive (or false discovery) rate, i.e., the proportion of apparently aberrant reports not
associated with outbreaks. Tables that can be used to find the value of A that is associated
with chosen values of ARLy and k are available (see for instance Rogerson 2001).

In the case of rare events, the CUSUM approach (11) is not adequate, since the counts do
not have a normal distribution. One remedy is to use the Poisson CUSUM (Lucas 1985).
Other methods used in disease surveillance to detect an increase in the mean of a Poisson
distribution include, for example, the short memory scheme of Shore and Quade (1989),

which is based on the distribution of cases in the current and previous periods. Kenett and
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Figure 4: Weekly counts of Salmonella enteritidis PT 1, 4, 6, 6A, 8, 14B and 21 in England,
Wales and Northern Ireland from 2000 to 2008 (i) and CUSUM of weekly counts
in the year 2009 (ii) (k = 0.5, h = 30).

Pollak (1996) use the Shiryaev-Roberts statistic (Shiryaev 1963; Roberts 1966) and apply it
to a non-homogeneous Poisson process. Whereas Gaussian or Poisson CUSUMs are designed
to analyze counted data, binomial CUSUMs (e.g., Reynolds and Stoumbos 2000) can be used
to monitor proportions.

Because CUSUMS are sensitive to small sustained changes in the mean numbers of reports,
they are well suited to detecting relatively long-lasting epidemics, such as influenza. How-
ever, for the same reason, they are sensitive to small changes in reporting efficiency and
other artefacts of the reporting process. Thus, they may lack robustness when used with

surveillance data unless the baselines are frequently reset.

The EWMA control chart gives less weight to more historical data. The EWMA is defined
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by the following recursive equation:

2= 1=z +7 , (12)

where zp = 0 and the weight parameter v € (0,1]. The weighting for each older data
point decreases exponentially, giving much more importance to recent observations, while
not discarding older observations entirely. For v = 1, (12) is the same as the method by
Shewhart (1931). The asymptotic (one-sided) variant of the EWMA chart will give an alarm

at
ta=min{t: z > Lo.} , (13)

where L > 0 is a constant and o, is the asymptotic standard deviation of z; (Sonesson 2003).
Alternatively, one can use the exact standard deviation (which is increasing in time) instead
of the asymptotic of the alarm limit (13). For the EWMA chart, Elbert and Burkom (2009)
and Burkom et al. (2007) proposed the Holt-Winters technique for generalized exponential
smoothing (cf. Subsection 3.1) to account for trends and seasonal features in syndromic
data. Dong et al. (2008) constructed three types of EWMA methods that do not require an
assumption of identical distributions of the counts to detect a positive shift in the incidence
rate. Adaptions of the EWMA method for Poisson and binomial data are available (Borror
et al. 1998; Gan 1991). Using the exponential smoothing technique and properties of nu-
merical derivatives, Nobre and Stroup (1994) developed a method which bases monitoring
on changes in the numerical gradient of the variable under surveillance with respect to time.
Hoéhle and Paul (2008) present count data regression charts, which accommodate seasonal
variation in the mean of the infectious disease counts. Assume that the observed counts
originate from a negative binomial distribution parameterized by its mean p and dispersion
parameter 6. Note that for § — 0 the Poisson distribution with mean p is obtained. For the

in-control situation y; ~ NegBin(po+, 6), where

log(po) = o+ Bt + c(t) (14)

and c¢(t) is a cyclic function that may be modelled, for example, by trigonometric terms
(Serfling 1963). That is, the in-control mean is assumed to be time-varying and linear on the

log-scale. The out-of-control situation is characterized by a multiplicative shift p;; = pos X
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exp(k) with k > 0, which corresponds to an additive increase of the mean of the log-scale. It
is assumed that the in-control parameters are known, while s is unknown and is estimated
via maximum-likelihood. A generalized likelihood ratio statistic is computed to detect,
on-line, whether a shift in the intercept occurred. Extensions of the basic seasonal count
data regression chart are available that take account of autocorrelation between observations
(Hohle and Paul 2008) or the population size of the age-strata (Hohle and Mazick 2010).
Other modified CUSUM methods that allow for time-varying Poisson means were proposed
by Rossi et al. (1999) and Rogerson and Yamada (2004a).

The use of control charts has also been widely advocated for the surveillance of health care-
associated infections (Benneyan 1998a,b; Woodall 2006; Carey 2003; Limaye et al. 2008).
In this context, CUSUM charts are more frequently useful than EWMA charts (Woodall
2006), but Shewhart charts appear to be the charts that have found greatest application,
often being used to show the proportion of incidents in fixed periods of time. For example,
they have been used in this way to monitor anesthesia-related adverse events (Fasting and
Gisvold 2003) and risk-adjusted mortality rates of patients in hospital following admission
for acute myocardial infarction (Coory et al. 2008). Morton et al. (2001) considered the
application of Shewhart, CUSUM and EWMA charts for continuous real-time monitoring
of various hospital acquired infections, such as vascular surgical site infection and Klebsiella
pneumoniae. It was concluded that Shewhart and EWMA charts are together ideal for
monitoring bacteraemia and multiresistant organism rates, while Shewhart and CUSUM

charts together are suitable for surgical infection surveillance.

4.2 Temporal scan statistics

Scan statistics (e.g. Glaz et al. 2001) can be used to detect and evaluate clusters of disease
cases in either a purely temporal, purely spatial or space-time setting (Woodall et al. 2008).
In a temporal setting, this is usually done by gradually scanning a window across time, noting
the number of observed and expected observations inside the interval. The scan statistic has
long been used for retrospective detection of temporal clusters in epidemiology (Wallenstein
1980). Kulldorff (2001), Ismail et al. (2003) and Naus and Wallenstein (2006) adapted the

scan statistic for the use in prospective temporal surveillance.
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There are two general types of prospective temporal scan-based methods. One type involves
counting the number of incidences in a single region in the most recent time period (or
window) of a fixed length (Ismail et al. 2003; Naus and Wallenstein 2006). Let v, denote
the observation at the current time point n and let L be the fixed window size. The scan

statistic can be viewed as an unweighted moving sum (Han et al. 2010; Joner et al. 2008):

S, = Z Y - (15)

t=n—L+1
An alert is flagged as soon as (15) exceeds a threshold h, that is, the first time that S,, > h,
where h is typically chosen in conjunction with an acceptable value of ARLg, although
choosing h so that the type I error is a predetermined value « has also been suggested (Naus
and Wallenstein 2006).

In the prospective temporal scan method of Kulldorff (2001), the length of the window is
not a constant but varies over a range of values (see also Wallenstein and Naus 2004). Since
the temporal scan statistic by Kulldorff (2001) can be viewed as a special case of his spatio-
temporal procedure, a discussion of this method is deferred till Section 5. Public health
surveillance data are often non-stationary with seasonal and other effects that are seldom
found in industrial process control data. Wallenstein and Naus (2004) proposed a temporal

scan method that can account for seasonal effects.

4.3 Methods based on inter-event times

To model rare events, instead of monitoring aggregate total cases in discrete time periods,
Chen (1978) proposed the so-called sets technique which bases detection on the intervals
between reports. Devised for monitoring congenital abnormalities, in that context the sets
technique is based on the number of healthy newborns delivered in the interval between
the birth of an infant with the specific malformation and the birth of the next infant with
that malformation. The group of births in one interval is named a set, and its size is a
geometrically distributed random variable.

The sets technique may be applied to time intervals as well (e.g., Chen et al. 1997). Assuming
that events arise in a homogeneous Poisson process, inter-event times follow an exponential

distribution with mean p, say. The detection threshold is specified by parameters (n,7),
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and an aberrance is declared if the intervals between n + 1 consecutive events are all less
than 7. The false detection probability is (1 —exp{—7/u})", and the sensitivity of detection
is (1 — exp{—y7/p})™ when the rate of events increases by a factor v. The background
rate, and hence p, may be determined from historical data. Appropriate values of n and 7
are selected to yield acceptable sensitivity and false detection probabilities. The analysis is
performed whenever a new event occurs.

To reduce the expected frequency of false alarms obtained by the sets technique, Chen et al.
(1993) suggested some confirmatory procedures. These declare an alarm as either confirmed
or rejected according to data observed subsequent to the alarm. Reduction in the false
detection probability is achieved at the expense of an increase in the delay in detecting a
true alarm.

Note that methods which base detection on total reports will fail when events are very
rare, because even a single report will then be unusual in a statistical sense. In such cases,
one might either specify a minimum outbreak size that must be exceeded for the count to
qualify as an aberration (Farrington et al. 1996), impose a lower bound on the standard error
used to normalize residuals, or alternatively use the sets monitoring technique. Noteworthy
modifications of the sets technique are available: an extension proposed by Sitter et al. (1990,
1991) and the cumulative score procedure (Munford 1980; Wolter 1987). Sego et al. (2008)
proposed the Bernoulli CUSUM chart for the surveillance of rare health events instead.
Other techniques based on the time to failure have been proposed, such as time-between-
event (exponential) CUSUM or EWMA schemes (e.g., Gan 1994, 1998). Exponential control
charts arise naturally in the context of monitoring the occurrence rate of rare events, since
inter-event times for a homogeneous Poisson process are exponentially distributed random
variables. The exponential CUSUM will detect a significant increase in the rate of incidence
(corresponding to a decrease in the mean time between events) earlier than the Poisson
CUSUM because, unlike the latter, it can trigger an alarm before the end of the time period

under consideration.
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5 Methods incorporating spatial information

5.1 General

As well as giving a date, in almost any surveillance system the reported incidence of a disease
will specify a location. Using the spatial information given by the location can potentially
enable localised outbreaks of a disease to be detected, or variations in regional patterns to be
identified. To use spatial data, surveillance methods must have some notion of the distance
between observations or some spatial structure. Several methods require only a cut-off value
that categorises pairs of observations as either being ‘close’ or ‘not close’ (e.g., Rogerson 2001;
Kulldorff 2001). In others, an appropriate adjacency matrix or distance metric is defined.
Suppose that there are m geographical units and let S be a m x m symmetric matrix of
values sy; representing the closeness of geographical units £ and [, with 0 < s,; < 1. For

example, Rogerson (1997) used the metric

Skl = exp(—dkl/r) s (16)

where dy; is the geographic distance between reporting units k£ and [ and 7 is a specified
constant. Tango (1995) suggested setting 7 in (16) equal to five but results are fairly in-
sensitive to its precise value (Bithell 1992). When the locations of observations are known
individually, spatial structure has been imposed by using kernel estimation to fit a smooth
surface that represents the intensity of reported cases (Diggle et al. 2005). Both fixed and
variable kernel bandwidths have been used, but it seems sensible to have bandwidths that
are narrower in large towns than in sparsely populated country areas. When a region is
divided into sub-areas, spatial correlation can also be induced by defining a relationship be-
tween neighbouring areas. For example, if u; denotes the “location effect” of area k, then a
common choice for modelling spatial correlation is to assume that wu; follows the conditional
autoregressive (CAR) model proposed by Besag et al. (1991). This model states that each
uy, is normally distributed around the mean value of v amongst its immediate neighbours.

That is, uy, | {w;, | # k} ~ N (uy, %), where

m m
Uy = E UpWi/ E Wy
=1 =1
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and

1 if areas k and [ are adjacent
Wy =

0 otherwise .
In principle, it is suboptimal to ignore spatial information in disease surveillance. Indeed,
it may seem suboptimal to adopt any surveillance system that does not model the space-
time patterns of diseases as completely as possible when such information is available and
reliable. However, the use of spatial information is computationally demanding, and it may
not be practical for surveillance systems that monitor several hundred diseases and disease
organisms — computer limitations will restrict the complexity of calculations that can be
performed for each disease. Early approaches to the detection of localised disease outbreaks
focused on only detecting outbreaks, enabling the methods to be comparatively simple. They
include methods based on CUSUMs, and the scan statistic. These methods are described
in Subsections 5.2 and 5.3, respectively. We then describe methods based on regression
models in Subsection 5.4. These methods have the more ambitious aim of fitting space-time
models to disease occurrences, typically using the Bayesian paradigm so that MCMC can be
used as a tool to estimate model parameters. The resulting methods are computationally
very intensive. However, there are examples where methods that require MCMC have been
applied in the routine surveillance of some specific diseases (e.g., Diggle et al. 2005), though

strategies to reduce computation were necessary.

5.2 Spatial CUSUM charts

CUSUM charts are a standard approach for detecting outbreaks and changes in spatial pat-
tern. CUSUMs cumulate information from each case. In the spatial context, the information
cumulated typically involves spatio-temporal proximity to other points. In order to isolate
the specific contribution of the latest observation, conditioning on previous information is
required. Thus the formula for the CUSUM given in equation (11) must be modified. The

modified formula is

Ce=max o, Gy + (LS )} (17)

Var(yt|Vt71>1/2

where C; is the CUSUM at time ¢, k is a specified constant, and E(y|vy—1) and var(y:|vi—1)

are the expectation and variance of y; conditional on relevant information v;_; from the first
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t — 1 reporting periods, respectively. An alarm is flagged if the CUSUM exceeds a threshold.
Statistics developed for the retrospective analysis of spatial disease data have been adapted
to give the ;. The Knox test (Knox 1964) aims to identify space-time interactions by
categorising any two cases as close in space, close in time, close in both, or close in neither.
The number of observations that are close in both space and time is referred to as the Knox
statistic and a space-time interaction is indicated if it is unusually large. Rogerson (2001)
adapted the Knox statistic for use in surveillance by equating its value after ¢ cases to
in the CUSUM in equation (17). He showed that 1,1 may be replaced by y;—1 (i.e. y1
contains all the relevant information in the first ¢t — 1 observations). He also gave formulas
for the conditional means and variances needed to form the CUSUM. However, empirical
testing by Marshall et al. (2007) suggests that these estimates of means and variances can be
poor and that computer simulation should be used to estimate both them and the threshold
at which an alarm is triggered.

Rogerson (1997) adapted Tango’s statistic (Tango 1995) in a way similar to the method used

with the Knox statistic. Tango’s statistic for spatial clustering has the form

y=(r—p)'Sr—p), (18)

where r and p are m x 1 vectors containing the observed and expected proportions of cases at
each location, respectively, and S has the meaning assigned in Subsection 5.1. The statistic
(18) was designed as a retrospective test of spatial clustering and is completely insensitive
to a global change in the rate of disease occurrence. In part this is a disadvantage, but it
also means that the statistic remains valid when there is seasonality and/or annual trend.
Raubertas (1989) gave a method that forms neighbourhoods in a way that allows a report-
ing unit to belong to more than one neighbourhood. The data within a neighbourhood are
pooled in weighted averages, using a measure of closeness as weights. For each neighbour-
hood a CUSUM is formed that monitors incidence rate and an alarm is triggered if any
CUSUM exceeds a threshold. This early method continues to influence surveillance methods
in varied contexts (e.g., Sparks 2010).

ClusterSeer (Jacquez et al. 2002) and GeoSurveillance (Yamada et al. 2009) are software
packages that implement surveillance methods based on spatial CUSUMs. The GeoSurveil-

lance package was used to perform spatio-temporal surveillance of the weekly counts of all



28

Salmonella enteritidis cases in England, Wales and Northern Ireland in 2009. The geo-
graphical units are twelve regions defined by the HPA, namely “North East”, “Yorkshire
& Humberside”, “East Midlands”, “East”, “London”, “South East”, “South West”, “West
Midlands”, “North West”, “Channel Islands & Isle of Man”, “Wales” and “Northern Ire-
land”. Figure 5 displays the results for four of these regions and gives evidence that spatial
heterogeneity is inherent in the data (see also Figure 4 in which data aggregated over the

twelve geographical areas are presented).
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Figure 5: CUSUMs of weekly counts of Salmonella enteritidis PT 1, 4, 6, 6A, 8, 14B and 21
for four regions in England, Wales and Northern Ireland in the year 2009.

5.3 Space-time scan statistics

For a temporal scan, a search window is gradually moved across time, looking for a window

in which the number of observed cases is unexpectedly high (cf. Subsection 4.2). Similarly,
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for a spatial scan, a circular window is moved over a map of the study area, looking for a
position where the circle contains an unexpectedly high number of cases. For a space-time
scan the two are combined to form a cylindrical ‘window’ whose height is the time-dimension.
This form of search window has been used for the retrospective detection of local disease
outbreaks since at least Wallenstein et al. (1989). Kulldorff (2001) adapted the method for
prospective surveillance.

The temporal component of the scan windows used by Kulldorff (2001) has a varying start
time but reaches to the end of the current monitoring period, as the aim is to detect local
disease outbreaks that are currently active. The spatial components of the windows have
varying centres and radii. A search finds the scan window that has the most unexpectedly
high number of cases, judged by the likelihood ratio

L(z)

LR = ——= 1
R==2 (19)

where L(z) is the maximum likelihood for cylinder z if the scan window has its own occurrence
rate and L is the maximum likelihood if the scan window has the underlying base rate as
its occurrence rate. The likelihoods in (19) are generally based on the assumption that the
number of cases follows a Poisson distribution. The maximum likelihood ratio is defined to
be the space-time scan statistic and a p-value for its significance is obtained through Monte
Carlo hypothesis testing.

Various methods aimed at improving the scan statistic have been suggested. Kleinman et al.
(2005) focused on the baseline rates of disease incidence in the population-at-risk, which
are used in calculating the scan statistic. They proposed one estimate of these rates that
incorporates an adjustment for day-of-week, month and holidays, and a second estimate that
includes an additional adjustment for local history of illness. Kulldorff et al. (2005) suggested
a scan statistic that does not require the size of the population-at-risk to be estimated and
only needs data on cases. The scan statistic is a log likelihood ratio, very commonly based on
the Poisson assumption, and the p-value is an empirical probability of a statistic as large as
that observed based on Monte Carlo repetitions. Its assumptions are similar to those made
with the Knox statistic. Assungao and Correa (2009) adapt the Shiryaev-Roberts statistic
(Shiryaev 1963; Roberts 1966) as a scan statistic, modelling a disease outbreak as a change

point in a cylindrical scan window. They improve the computation speed of their method
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through formula for updating estimates when a case occurs, rather than having to calculate
estimates from scratch.

Sonesson (2007) fits the space-time scan statistics of Kulldorff (2001) and Kulldorff et al.
(2005) into a CUSUM framework and examines properties of the resultant methods. Spatial
scan statistics (without a temporal component) have also been used for disease surveillance
by considering case incidence in a short fixed time period, such as the last seven days
(Mostashari et al. 2003). In a different direction, using ellipses (rather than circles) for the
spatial component of a space-time scan window has been suggested (Kulldorff et al. 2006).
Also, non-parametric spatial scan windows to detect irregularly shaped clusters have also
been explored (Assuncao et al. 2006; Duczmal and Assungao 2004; Takahashi et al. 2008;
Tango and Takahashi 2005). However using such windows significantly increases computer
time.

The space-time scan statistic is currently the most widely used method for detecting the
emergence of localised disease clusters (Shmueli and Burkom 2010). In one application it
was used with a dataset on lower respiratory disease in Boston. The work showed the
importance in some circumstances of modifying base rates to allow for seasonal effects and
day-of-the-week effects — otherwise there appeared to be significant clusters on most weekdays
between October and February (Kleinman et al. 2005). In another application the space-
time scan statistic proved better at detecting emerging clusters of male thyroid incidence in
New Mexico than a scan statistic that was purely spatial (Kulldorff 2001). Kulldorff et al.
(2005) demonstrated the effectiveness of their method with data on diarrhea and influenza
in New York City: four of the five clearest alarms given by their method were likely local
precursors of city-wide outbreaks and the number of false alarms was modest. Space-time
scan statistics have also been used with data on Burkitt’s lymphoma (Assun¢ao and Correa
2009), brain cancer (Kulldorff et al. 1998), and tularemia (Sonesson 2007).

SaTScan (Kulldorff 2010) and ClusterSeer (Jacquez et al. 2002) are software packages that
implement scan statistic methods. SaTScan is used by various American federal, state
and city agencies for retrospective and prospective cluster detection (Zhang and Lin 2009),
including the New York City Department of Health, who use it for syndromic surveillance.
SaTScan is versatile in its definition of a spatial location. To monitor infections disease

outbreaks in hospitals, for example, a “spatial” location has consisted of individual wards and
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services (such as medicine, oncology) or groups of wards or services sharing in patient care
(such as cardiology and cardiac surgery services), regardless of physical proximity (Huang

et al. 2010).

5.4 Spatio-temporal regression methods

A variety of spatio-temporal regression methods have been proposed. An important distinc-
tion between them is whether they analyse aggregated data or data at an individual level.
Often the region of interest is broken into small areas and the aggregated number of cases in
each area in each time period forms the response. This form of area-level data has usually
been modelled as a discrete spatial model in which neighbourhood relationships between the
areas are defined. The second form of data can arise with sparse data, when the location of
each case is recorded at an individual level. These individual-level data have been modelled
as a Cox point process (Cox 1955).

For an area-level model, let y; denote the number of cases in area k in time period ¢t.
Sometimes the model specifies that y; follows a binomial distribution (e.g., Diggle et al.
2004; Kleinman et al. 2004) but, more commonly, it is assumed that y;; follows a Poisson
distribution. Interest then centres on estimating the Poisson mean (Lawson et al. 2003;
Vidal Rodeiro and Lawson 2006; Watkins et al. 2009; Zhou and Lawson 2008), which varies
with k and ¢. Lawson and his co-workers generally assume that E(yx) = ex0xi, where Oy is
the unknown true relative risk in area k and time period ¢t and ey, is the expected number
of cases in the kth area in that period. The values of ey, must be specified before the model
is fitted or else there is an identifiability problem. The eg; could be based on the “at risk”
population demographics in each area, perhaps with an adjustment for seasonality or trend.
Information about the e;; might also be gleaned from monitoring a different disease that
has a similar at-risk population structure to the disease of interest (Lawson 2005). The

logarithm of the relative risk is decomposed into spatio-temporal components:
log Ok = wp, + v + 74 + Yt

where uj represents spatially correlated extra variation, v, represents uncorrelated extra
variation, 7; describes temporal variation, and v is the space-time interaction. It is gen-

erally assumed that 7, and ~;, follow random walks to allow a smooth variation in time
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(Knorr-Held 2000): 7 ~ N(13-1,02) and Y ~ N (Vk1-1,07%). In general, the CAR model
of Besag et al. (1991) is used to model the spatial correlation between the wy.

The complexity of this model makes it virtually essential to use Bayesian methods for model
fitting. Vague prior distributions are given to the model parameters and MCMC methods
are used to sample from the posterior distribution and estimate parameters. To test for
changes in spatial pattern, the estimates of parameters could be monitored (Lawson et al.
2003) but, much more commonly, observations are compared with one-step-ahead predic-
tions (Kleinman et al. 2004). To detect gradual signals of interest, buffers between modeling
intervals and test intervals can be used.

Other modelling stategies have also been proposed. Zhou and Lawson (2008) give a compu-
tationally cheap approach in which separate spatial models are fitted to the data from each
collection period. These models are combined by forming exponentially weighted moving
averages and a sharp change in the weighted average in any neighbourhood suggests an out-
break. Another computationally quick method is given by Kleinman et al. (2004), who fit
generalised linear mixed models that include time-of-day and seasonality components, but
which only allow uncorrelated heterogeneity between areas. Several researchers have used
a model in which the disease process can switch between two (unobserved) states: endemic
(non-outbreak) and epidemic (outbreak). To model the process HMMs are used and an
alarm is flagged on the basis of a Bayes factor that reflects the relative likelihoods of each
state (Lawson et al. 2003; Madigan 2005; Watkins et al. 2009).

Modelling individual-level data has attracted far less attention. Clark and Lawson (2006)
proposed a novel approach using non-parametric regression via kernel smoothers. However
the major work with individual-level data was in the AEGISS (Ascertainment and Enhance-
ment of Gastrointestinal Infection Surveillance and Statistics) project, reported in Diggle
et al. (2004) and Diggle et al. (2005). The aim of this project was to develop a monitoring
tool that could identify anomalies in the space-time distribution of non-specific gastroin-
testinal infections. The data it collected was the location, x, and date, t, of each individual
case. As the point process model for these data, Diggle et al. (2005) used a non-stationary

log-Gaussian Cox process in which the spatio-temporal intensity, A(x,t) was decomposed as

Az, ) = Ao(x)po(t) R(x, 1) (20)
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where A\g(z) is a smoothly varying surface describing the normal disease pattern that was
estimated using kernel smoothing, po(t) is temporal variation, modelled parametrically to
reflect day-of-week and season effects, and R(z,t) is the residual space-time variation.
Both Ao(z) and po(t) in (20) could be estimated from historical data but up-to-date pre-
dictions of R(z,t) were required. These predictions were based on the most recent five
days data. Naturally they had far more uncertainty attached to them than the estimates of
Xo() and po(t), so these latter estimates were treated as deterministic quantities. To detect
outbreaks, the region was divided into neighbourhoods and MCMC was used to determine
the probability in each neighbourhood that R(x,t) exceeded a prespecified threshold. The
results were reported daily on maps with colours denoting probability levels.

The complexity of models places a burden on computer resources and the problem is ex-
acerbated if MCMC is used to implement Bayesian methods. As noted by Lawson et al.
(2004, p. 952), ... for any Bayesian model, computational speed-ups must be sought to make
implementation realistic in a surveillance context. In line with this, it seems sensible to
follow Diggle et al. (2005) and treat any quantity that is estimated from historical data as
deterministic. Also, historical data can generally be restricted to a moving window of the
last 3, 5 or 8 years (Lawson et al. 2003) unless the data are very sparse. Similarly, a window
of just the most recent past (perhaps only a few days) has generally been used when much
more weight should be given to recent data (e.g., Diggle et al. 2005). Numerical approxi-
mations have also been used to good effect. For example, Kleinman et al. (2004) estimated
parameters through quasi-likelihood, which is computationally less demanding but which
introduces some bias. In many situations these pragmatic measures would simply be an

option, but in the context of real-time surveillance they are a necessity.

6 Multivariate outbreak detection

6.1 Scope of multivariate detection

Most outbreak detection systems track more than one data series. For example, in the UK,
systems of laboratory surveillance (Farrington et al. 1996; McCabe et al. 2003), syndromic

surveillance (Baker et al. 2003; Robertson 2006), and systems for institutional surveillance
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(Marshall et al. 2004) may typically monitor dozens or even hundreds of different data series.
When the different data series (and, most importantly, outbreaks within them) are likely
to be unrelated, it usually makes most sense to consider them as separate univariate series.
However, in some cases, several series will relate to the same underlying process, and hence
process changes are likely to be strongly correlated. This applies, for example, to indicators
of influenza (Stroup et al. 1988; Griffin et al. 2009; Mann 2009), reports of gastrointestinal
illness from different sources (Kulldorff et al. 2007), or time series of counts of the same infec-
tion in different age groups (Held et al. 2005). In such circumstances multivariate methods
of outbreak detection are likely to be fruitful in exploiting dependencies, both between the
underlying processes and between the timing of outbreaks.

An overview of methods for multivariate surveillance is given in Sonesson and Frisén (2005)
and Frisén (2010), who classified genuinely multivariate approaches into categories that in-
clude reduction of dimensionality, joint modelling, and vector accumulation methods. These
are discussed in turn in Subsection 6.1, Subsection 6.2 and Subsection 6.3, respectively.
Sonesson and Frisén (2005) and Frisén (2010) also mention so-called ‘parallel surveillance’
methods. A parallel approach monitors each variable separately by means of a univariate
surveillance method. An alarm for the multivariate process is declared if some condition
is fulfilled, e.g. the first time that any of the univariate processes gives an alarm. These

methods will not be considered further here.

6.2 Dimension reduction

Dimension reduction methods for multivariate surveillance data could in principle include
standard tools such as principal component analysis (Jolliffe 2002). These have been used
for detecting aberrations in other fields (Ku et al. 1995), though they may lead to prob-
lems of interpretation. A more popular approach is to reduce the multivariate data at
each time point to a scalar, which is then monitored by univariate surveillance meth-
ods. Let y = {y,,t =1,2,...} be the multivariate process under surveillance, where y, =
(Y1ts Y2t - - -, Ypt) | is observed with in-control mean p x 1 vector g and p X p covariance matrix

3. An early multivariate surveillance scheme is that based on Hotelling’s T2 (Hotelling 1947;
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Jackson 1959). The process parameter at time ¢ for multivariate data y, is

T*(t) = (y,— ) ' (y, — p) - (21)

The statistic (21) is a multivariate extension of the Shewhart chart, an alarm being declared
if t4 = min{t : T2(t) > h}, where h is a specified threshold. For a bivariate process (z,y;)
with changepoint (¢,,t,), Andersson (2009b) shows that the conditional expected delay,
defined as t4 — t(1) given that t4 > t(1), where ¢y = min{t,,t,}, depends only on |t, —t,|.

A further possibility is to undertake univariate analyses on each data set, and combine the
p-values for the marginal tests into a single ‘consensus’ value. One such method uses Fisher’s

rule to obtain the summary statistic F' from n individual p-value p;:
F = QZln(pi) :

If the n tests are independent then the null distribution of F is x? with 2n degrees of freedom.
This and other methods for combining p-values, along with Hotelling’s 72, are discussed in

an outbreak detection setting by Burkom et al. (2005).

6.3 Joint modelling methods

Kulldorff et al. (2007) developed a multivariate space-time scan statistic based on the sum
of the log likelihood ratio statistics for the univariate processes. This generalizes an earlier
univariate version (Kulldorff 1997). Thus, suppose that the total number of reports for series
jis N;j (j=1,...,p). For a space-time cylinder z with n; , cases from series j and expected
cases ;. obtained under a Poisson model, the likelihood ratio for a ‘high’ cluster is

nj,z o \ N2
LR].(Z):<"N) (M) (22)

1, Nj —

it n; . > p;, and 1 otherwise. The multivariate scan statistic for detecting ‘highs’ is then

T = maxz log LR;(z) , (23)

J
which adjusts automatically for multiple testing inherent in considering multiple series as
well as multiple cylinders. Note that equation (22) differs very slightly from Kulldorff’s

formulation: his LR;(z) is multiplied by an indicator function, but this will cause problems
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when taking logarithms.

To illustrate this approach, the multivariate space-time scan statistic (23) was applied to
syndromic surveillance data in Scotland. The data give the number of calls to NHS24 by
postcode district and day from 19 February to 1 April 2007 originated within the Glasgow

postcode area (see Figure 6). This area consists of 50 postcode districts. Data are

Figure 6: Map of the 50 districts of the Glasgow postcode area (green, red and orange) in
the West of Scotland (pink). The two clusters are indicated in red (1 April) and
red+orange (26 March). Green are the Glasgow postcode districts that are not in
the clusters.

recorded for the two symptoms diarrhoea and vomiting which are syndromic indicators for

norovirus infection. A space-time scan statistic analysis was performed for each of the 7 days

from 26 March to 1 April, using the data from 19 February 2007. We used 3 days as the
maximum temporal window size. Calculations were performed using the SaTScan software

(Kulldorff 2010). The results of the analyses are presented in Table 1. The strongest signal

was on 1 April, with the cluster consisting of 2 days and 25 postcode districts. With a

recurrence interval of 2 years and 269 days, this cluster is unlikely to be a chance occurrence.

A second cluster with an identical recurrence interval was detected on March 26, containing

27 postcode districts during 3 days.



37

Table 1: The two most likely clusters for norovirus in the Glasgow postcode area, during 26
March to 1 April 2007, as generated by the multivariate space-time scan statistic
(Obs. (observed), Exp. (expected), RR (relative risk), RI (recurrence interval)).

Cluster characteristics Diarrhoea Vomiting
Date #postc. #days Obs. Exp. RR Obs. Exp. RR RI
26 March 27 3 49  49.29 0.99 192 123.84 1.59 2 years 269 days
1 April 25 2 47 2828 1.69 164 76.02 2.22 2 years 269 days

Other joint modelling approaches have been suggested, based on a joint model for the entire
multivariate data series. In one such method, the alarm function is based on the likelihood
ratio derived from the joint distribution of the multivariate process (Andersson 2009a). This
is a multivariate version of the method of Frisén and de Maré (1991). Schidler and Frisén
(2010) present a multivariate extension of the semiparametric univariate method of Frisén
and Andersson (2009), based on the sufficient reduction approach of Frisén et al. (2010b) for
step changes.

Several other joint modelling methods have been used for infectious disease data, but have
not been applied to outbreak detection per se, though extensions in this direction should
be possible. Held et al. (2005) extended to the multivariate case a model incorporating a
branching process presented in Held et al. (2006b). This model was further extended in
Paul et al. (2008) to analyse data from several pathogens. A multivariate spatial model for
different gastrointestinal infections was presented in Held et al. (2006a).

Sebastiani et al. (2006) used dynamic Bayesian networks to study the interplay of four
different data sources that are monitored for influenza surveillance. Mann (2009) developed

a multivariate HMM with a shared hidden process to model several markers of influenza.

6.4 Vector accumulation methods

Vector accumulation methods include multivariate extensions of the EWMA and CUSUM
charts, referred to as MEWMA and MCUSUM, respectively. Generalizing the EWMA is

relatively straightforward (Lowry et al. 1992), via the recursive scheme

ze = Az —p) + (L, — M)z (24)



38

where A is a diagonal p x p matrix of values in (0, 1] and I, is an identity matrix of order p.

The chart from (24) goes out of control when
T} =2z,%,'z, > h

for some control limit A, where Xz, is the covariance matrix of z;. In contrast, general-
ising the standard univariate two-sided CUSUM is complicated by the fact that there are
two cumulative sums for each variable. Crosier (1988) and Pignatiello and Runger (1990)
developed multivariate CUSUMS as generalisations of new univariate CUSUMS requiring
a single cumulative sum per variable. Golosnoy et al. (2009) investigated the properties of
the MCUSUM chart of Pignatiello and Runger (1990) and suggested further enhancements.
Ngai and Zhang (2001) generalized the standard univariate CUSUM in the sense that the
p-dimensional version reduces to it when p = 1. These various MCUSUMS all apply only to
independent multivariate observations. Bodnar and Schmid (2007) further extended these
methods to multivariate time series, taking into account dependencies in the underlying
process. Moving beyond Gaussian processes, an example of a rank-based MCUSUM can be
found in Qiu and Hawkins (2001), with further development of this non-parametric scheme

provided by Qiu and Hawkins (2003).

7 Comparison and evaluation of prospective outbreak
detection systems

As documented in earlier Sections, a rich array of methodologies for outbreak detection
is available. This raises the question: which to use? It is not feasible to make detailed
recommendations as to which method is ‘best’, because this will depend critically on the
specific details of the application and implementation, as well as its purpose and context.
In particular, the key issues that are likely to affect any assessment of the relative merits of
different methods are (a) the scope of the system, in particular how many parallel data series
are to be monitored, which can range from one to several thousand; (b) the quality of the data
available, including the method of data collection, and the delay between event occurrence
and reporting; (c) the spatio-temporal features of the data, such as count frequency, trend
structure, seasonality, epidemicity, time step and spatial resolution; (d) the features of the

outbreaks that may occur, for example explosive or gradual onset, brief or long duration, and
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level of severity, or a mix of these; (e) the use to which the system is to be put, including the
post-signal processing protocols; (f) the availability of processing power and human resources
to support the system; (g) the choice of metric to evaluate results.

Accordingly, we venture no recommendations as to the strengths and weaknesses of the
different methods. Instead, and in the spirit of this review, we focus on some of the statistical
issues involved in evaluating and comparing methods. This remains to some extent an
undeveloped area, in spite of much discussion and some progress; see Buckeridge et al. (2005)
and Fraker et al. (2008) for overviews. It is influenced by two distinct perspectives: technical
approaches derived from statistical process control, and the more empirical perspective of

epidemiology.

7.1 Optimality properties

In the statistical process control literature, performance of a detection system is usually
assessed by criteria based on time to event, such as the average run length (ARL). The ARL
to detect an ongoing outbreak that started at the same time as the surveillance is ARL;. The
criterion of minimal ARL;, given a fixed ARLy, is sometimes used in public health settings
(Grigg et al. 2003; Musonda et al. 2008), but the usefulness of this criterion for detecting
outbreaks has been questioned by Frisén (1992, 2003), owing in part to the restriction that
the measure only relates to outbreaks starting concurrently with the surveillance.

Frisén (1992) considers other criteria, such as the probability of a false alarm before some
specified time t after the start of surveillance, the probability of detection of an outbreak
starting at time ¢ before time ¢ + d for some d, and the positive predictive value of an alarm,
namely the probability that an outbreak is occurring, given that the system has signalled
one. These and related measures are discussed in Sonesson and Bock (2003). Recently,
measures of performance based on other temporal criteria have been proposed (Fraker et al.
2008). Ome such is the recurrence interval, namely the time interval over which the expected
number of false alarms is 1, when the process is in control.

It is sometimes possible to determine which statistical detection method is optimal under
a given criterion. The main theoretical results on optimality properties are those of Frisén
and de Maré (1991) and Frisén (1992, 2003). Consider a series of independent random

variables x; at times s with mean pg at s < 7" and mean p; > o at s > 1", where T is the
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(unobserved) start of the outbreak. An alarm function p is defined based on suitable null and
alternative hypotheses, defining a test with rejection region of the form p(xs) > k. This test
maximizes the probability that an alarm is detected, among all tests with a specified false
alarm probability. Optimality in this sense derives from a version of the Neyman-Pearson

Lemma, and indeed the test may be expressed as a likelihood ratio statistic. Thus

s

ple) =3 wls, t)L(s,1) > k,

where
_P(T=1) _ fa (3T =1)
R T B S A EA /)

where f, is the density of  and kg is the critical value of the test at time s.

Within this framework, Frisén (2003, 2007) shows that the Shewhart chart method, for
which p(xs) = L(s, s), maximises the probability of detecting the outbreak at time 7" = s,
and, asymptotically (as p; increases), minimizes time to detection, for a fixed false detection
probability. In the Shiryaev-Roberts method (Shiryaev 1963; Roberts 1966), dependence
on T through w(s,t) is eliminated by setting w(s,t) = 1, which may be justified asymp-
totically as corresponding to vanishingly low probability of an outbreak. More generally,
however, the performance of a method will depend on the time T at which the outbreak
occurs after surveillance has begun. Minimax optimality criteria minimize the expected
delay in detection, for the worst possible choice of T. Some CUSUM methods, for which
p(zs) = max; L(s,t), are minimax-optimal in this sense (Frisén 2003).

However, the usefulness of such theoretical optimality properties is limited by the restrictive
assumptions under which they are derived. In practice, surveillance data are noisy, often
nonstationary or autocorrelated, outbreaks are of varying durations and intensities but sel-
dom indefinite, the distributions of the observed counts are not generally Poisson. Arguably,
the notion of the process being ‘in control’ or in a ‘steady state’ bears little relation to re-
ality in the context of surveillance. While Frisén (2003) discusses optimality properties in
the presence of such complexities, a sufficiently robust general theory remains elusive. In
addition, it is often advisable to consider several performance measures concurrently. For

these reasons, more empirical criteria are usually employed to compare methods.
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7.2 The epidemiological perspective

The epidemiological perspective derives from the evaluation of diagnostic tests in clinical
medicine, and is based on concepts such as sensitivity, specificity, and predictive value, ap-
plied to surveillance time units rather than individual patients. An extensive discussion of
these types of measures, relating largely to the era before computerized surveillance, but of
lasting relevance, may be found in Thacker et al. (1988), who identify the following criteria:
usefulness, cost, sensitivity, specificity, representativeness, timeliness, simplicity, flexibility
and acceptability. These measures relate to the performance of a surveillance system as a
whole, including the process of data collection and the wider public health impact of the
system, rather than the evaluation of different statistical algorithms.

To evaluate statistical algorithms, it is customary to use a combination of numerical indices,
most commonly sensitivity, specificity (or positive predictive value), and timeliness, namely
the delay between the start of the outbreak and its detection. However, none of these quanti-
ties is straightforward to standardize or operationalize in the context of outbreak detection,
owing to the contextual factors set out at the beginning of this section; their big advantage
is that they relate directly to the preoccupations of system users.

Several approaches have been taken to combine these indices so as to obtain a single perfor-
mance measure which can be compared meaningfully across detection systems. The standard
method is to calculate a ROC (receiver operating characteristic) curve, and use the AUC
(area under the curve) as a summary measure. ROC curves are obtained by plotting sensi-
tivity against 1 - specificity, and thus ignore the key timeliness variable. Buckeridge et al.
(2005) discuss a variant, the AMOC curve, obtained by plotting a measure of timeliness
(such as the time to outbreak detection on an inverted scale) against 1 - specificity. Zhang
et al. (2003) used both ROC and AMOC curves to compare performance of several outbreak
detection systems.

Kleinman and Abrams (2006) have proposed a weighted ROC curve, or WROC curve, in
which each point of the curve is weighted by a timeliness measure, and a weighted AUC is
derived which thus takes timeliness into account. They suggest two ways of doing this. In
the first, it is assumed that there is a reference time after the outbreak starts by which it

must be detected, and measure the proportion P, of time saved relative to this reference
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time. Thus, suppose that an outbreak starts at time ¢, and that the pre-determined refer-
ence time is ¢t + D. If the outbreak is detected at time s > ¢, or not detected (in which case

s = 00), then
Pyw=1—3s/D if s <D, P, =0 otherwise.

Martinez-Beneito et al. (2008) used this approach to evaluate different systems for detect-
ing influenza epidemics. In the second method of Kleinman and Abrams (2006), timeliness is
a 0-1 variable according to whether the outbreak was detected within a specified time or not,
and is therefore similar to the successful detection probability of Frisén (1992). Under both
schemes, the weighted AUC equals 1 if the system is fully accurate and timely. Kleinman
and Abrams (2006) also propose several 3-dimensional generalizations of the ROC curve, the
third dimension being a timeliness measure. The AUC is replaced by the volume under the
curve, VUC. Cowling et al. (2006) used the VUC approach in comparing different outbreak
detection systems for influenza.

Further complications arise when the system is intended to work with more than one data
series. In order to control the false discovery rate, namely the proportion of signals that do
not correspond to outbreaks, either a Bonferroni correction may be applied, or the methods
of Benjamini and Hochberg (1995) may be used. Marshall et al. (2004) discuss these issues
in the context of hospital performance monitoring. In contrast, Farrington et al. (1996)
use an empirical approach in which, each week, the number of flagged organisms (out of
many hundred reported) is limited to some manageable ranked number with the smallest
p-values (Farrington 2004), since the true timeliness of outbreak detection depends also on
post-signal confirmatory procedures. Grigg and Spiegelhalter (2008) show how the methods
of Benjamini and Hochberg (1995) can be applied to p-values derived from CUSUMs. For
spatial surveillance, which may also involves monitoring several data series, a further elab-
oration of the ROC curve has been proposed, in which the fraction of outbreak locations
detected is plotted against 1 - specificity Buckeridge et al. (2005).

Evaluation methods for large surveillance systems is an area requiring further work; it is
unlikely that a single plot or index will suffice. For example, evaluations of systems applied
to multiple organisms should ideally allow for differences in public health importance of

different outbreaks (as determined by their size, severity, and cost). Frisén (2003) discusses
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utilities, but in the context of delays in detection rather than outbreak severity. This is
a topic requiring further development, in particular to incorporate prior knowledge about
the likely severity of an outbreak for a particular organism and age group combination, and

derive suitable importance weights.

7.3 Study designs

Most of the empirical investigations of outbreak detection algorithms have been done us-
ing real data, wholly simulated data, or real data with superimposed simulated outbreaks
(Buckeridge et al. 2005). Evaluations based on real data suffer from the obvious problem
that the true outbreaks are generally not known. Kleinman and Abrams (2006) proposed
to evaluate a new surveillance system by comparing the outbreak signals it generates with
outbreaks in real data identified by an existing system of recognized reliability. They suggest
three tests, including a permutation test in which outbreak locations and dates are randomly
reassigned, to assess whether the new system works in the sense that it detects outbreaks
better than chance, or that the signals are generated earlier than by the existing system.
An appealing approach is to inject simulated outbreaks into real data series. This combines
the realism of idiosyncratically noisy surveillance data, with knowledge of the outbreaks,
the epidemic curves and durations of which are under the investigator’s control. This is the
approach taken by Neill (2009). Others have used fully simulated data, with superimposed
outbreaks (Hutwagner et al. 2005a,b).

Relatively few evaluations of automated statistical surveillance methods against traditional
approaches have been undertaken: Leal and Laupland (2008) have attempted a systematic
review, while Huang et al. (2010) carried out a retrospective cohort study. Kleinman and
Abrams (2006) have commented that, in view of the multiplicity of evaluation measures now

available, an evaluation metric is now required for evaluating evaluation metrics.

8 Final remarks

In this paper we have sought to review the methods that have been proposed for identifying
outbreaks of infectious diseases as they arise, in sufficiently timely fashion to allow interven-

tions to take place. In limiting ourselves to these statistical methods, we chose not to deal
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with several issues of critical importance, which require further research and involvement of
statisticians. One key issue is how to design effective and flexible user interfaces - ideally
including a choice of statistical algorithms. Another is how to create effective protocols to
handle the signals that emerge from a statistical surveillance system. A third is how to deal
with the data imperfections, such as reporting delays, which inevitably affect prospective
detection systems.

This review shows that a very broad range of statistical techniques have been proposed
for prospective outbreak detection. They range from the very simple to the very com-
plex, involve both testing and modelling approaches, and increasingly make use of modern
simulation-based inference, often in a Bayesian framework. The choice of which statistical
technique to use will depend critically on the nature of the intended application. In partic-
ular, systems designed for the surveillance of a single infection or syndrome should arguably
be tuned to the specific features of that infection and may need frequent user intervention.
In contrast, systems designed for routine application to hundreds or thousands of possible
infections, with diverse frequencies and temporal patterns, will require robustness and au-
tomation. Systems will also vary according to what features they are designed to detect, for
example trends and seasonal variation may or may not be of interest according to context.
No single statistical technique is likely to be ideal in every setting.

Statistical outbreak detection is a multidisciplinary science, involving epidemiologists and
computer programmers, as well as statisticians. Its rapid development over recent years
presents an opportunity for statisticians, through the numerous techniques now available,
and the increased acceptance of statistical methodology in this field. But it also presents
a challenge to the statisticians: to demonstrate that these new statistical methodologies
provide added value in public health terms, by effectively supplementing other surveillance

methods for detecting outbreaks.
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