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Abstract Recent progress using geometry in the de-

sign of efficient Markov chain Monte Carlo (MCMC)

algorithms have shown the effectiveness of the Fisher

Riemannian structure. Furthermore, the theory of the

underlying geometry of spaces of statistical models has

made an important breakthrough by extending the clas-

sical theory on exponential families to their closures,

the so-called extended exponential families. This paper

looks at the underlying geometry of the Fisher informa-

tion, in particular its limiting behaviour near bound-

aries, which illuminates the excellent behaviour of the

corresponding geometric MCMC algorithms. Further,

the paper shows how Fisher geodesics in extended ex-

ponential families smoothly attach the boundaries of

extended exponential families to their relative interior.

We conjecture that this behaviour could be exploited
for trans-dimensional MCMC algorithms.

Keywords Extended exponential family · Fisher

geodesic · Fisher metric · Information geometry ·
Markov chain Monte Carlo

1 Introduction

The seminal paper [11] illustrates a very important way

that geometry can have an impact on statistical prac-

tice. It considers, under regularity, parameter spaces

of statistical models as smooth manifolds, and designs
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highly efficient Markov Chain Monte Carlo (MCMC) al-

gorithms by imposing (a) Hamiltonian structures and

(b) using Langevin methods on Riemmanian geomet-

ric structures. The current paper focuses exclusively

on the latter. In particular, on the geometry induced

– i.e. the geometry induced by the Fisher information

metric, [2] – but, critically, looks at wider classes of

parametric families by including their closures, thereby

including boundaries in the geometry. In many cases it

is at, or near, these boundaries, that standard statisti-

cal methodologies break down, [3], and this is precisely

where geometry can play a very important role.

Consider first a motivating and illustrative example,

that of the extended trinomial family.

Example 1 The extended trinomial family is the closure

of the trinomial family and so is parameterised by

∆2 :=

{
π = (π0, π1, π2)> : πi ≥ 0 ,

2∑
i=0

πi = 1

}
,

where the boundary, in which cell probabilities, πi, can

be exactly zero, is included in the model.

Figure 1 shows this parameter space as a closed sim-

plex in R2. We consider the Riemannian structure de-

fined by the Fisher information, whose geodesics in this

case have a closed form, [12] – although for the figure

the geodesic was computed with the same numerical

methods used in the other examples. One such (ex-

tended) geodesic is plotted (solid red line) and it can be

clearly seen that it smoothly touches the boundary. We

also note for completeness, that other important (non-

metric) geodesics, defined by [2] as the ±1-geodesics,

are also shown. As is generically true the +1-geodesic

converges to a vertex, while the −1-geodesic cuts the

boundary.
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Fig. 1 An extended Fisher geodesic in the extended trino-
mial family. The extended trinomial family is represented by
the closed 2-simplex while a Fisher geodesic is shown by the
solid ellipse which smoothly touches all three edges. Two
other geodesics, the ±1, are also shown. The +1 converges
to a vertex, while the −1 cuts the boundary.

Of key importance, for this paper, are the attrac-

tive properties of the Fisher metric – and correspond-

ing geodesics – near boundaries and the excellent per-

formance of MCMC methods. Mostly we take a purely

information geometric approach but the final section

considers in more detail the links between the Fisher

information and the related metrics used in MCMC.

The paper is structured as follows. In §2 we look at

exponential sub-families of the simplex (Definition 1).
This very general class of models includes general finite

discrete models, logistic regression, log-linear and other

models for categorical data analysis, and exponential

family random graph models. These models have also

been used as a proxy for a universal class of models, see

[7]. Indeed, [4] shows that the information geometry of a

continuous model, such as the normal, can be arbitrar-

ily well approximated by a discrete model by discretis-

ing the sample space to a fine enough level. Accordingly,

there is no real loss in embedding such models inside

a sufficiently high dimensional simplex. This approxi-

mation is particularly appropriate for Bayesian analy-

ses which condition on finite sets of data. In §3.1 we

show how the Fisher information adapts to the bound-

ary of the polytope which defines the mean parameter

space and its dual in the natural parameter space. This

adaption illuminates the excellent behaviour of the cor-

responding geometric MCMC algorithms as is shown

in §4. Furthermore, we show in §3.2 how the Fisher

geodesic smoothly attaches to the boundary, illustrated

in Fig. 1, and conjecture that this property may be use-

ful for developing MCMC algorthms in trans-dimensional

models, in §5. For brevity, proofs are omitted.

2 Extended multinomial models

Closures of exponential families have been studied by

[5], [6], [13] and [8]. The shape of the likelihood func-

tion, and hence of the posterior distribution, can be

dominated by the behaviour at the boundary. For ex-

ample, papers [10], [16] and [9] point out that existence,

and non-existence, of the maximum likelihood estimate

can be fully characterised by considering this closure.

Consider the general k–dimensional extended multi-

nomial model

∆k :=

{
π = (π0, π1, . . . , πk)T , πi ≥ 0 ,

k∑
i=0

πi = 1

}
. (1)

The multinomial family on k+1 categories can be iden-

tified with the (relative) interior of this space, int(∆k),

while the extended family, (1), allows the possibility of

distributions with different support sets.

Definition 1 The following definitions will be used through-

out.

1. The class of models we consider in the paper are all

exponential families which are subsets of ∆k. We

call these exponential sub-families.

2. A polytope in Rn is the intersection of closed half-

spaces. In particular the mean parameter space of

an exponential sub-family is the relative interior of

a polytope.

Let us consider an example of such an exponential sub-

family of ∆k.

Example 2 A two dimensional extension of the bino-

mial family, as described by Altham in [1], is given by(
k

y

)
exp(yη + T (y)φ− ψ(η, φ)) ∈ ∆k, (2)

where we take T (y) = y2, y = 0, · · · , k, which is equiv-

alent to Altham’s model. This allows both over and

under dispersion relative to the binomial and for large

k can be thought of as a finite, discrete approximation

to the normal family. For a general discussion on the

geometry of such discrete approximations see [4], and

for more details of the model see the Appendix.

Consider Fig. 2 which represents a mean parameter-

ization of this exponential family for the case k = 12.

The parameter space is the polytope whose boundary

is plotted in blue and it is precisely on the boundary

of this polytope where the support of the distribution
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Fig. 2 Fisher geodesic in the multiplicative binomial exam-
ple. Panel (a) shows the mean parameter space as a convex
set in R2 with the Fisher geodesic (in red) which smoothly
touches the boundary. Panel (b) shows a detail of the inter-
section with the boundary.

changes. The vertices of the polytope are plotted with

circles and edges with blue lines. Geometrically this

boundary corresponds to the points where the two di-

mensional model intersects the boundary of ∆k, see for

details [7].

In this plot, in red, we have plotted a Fisher geodesic,

computed numerically, shown globally in Panel (a) and

with detail of the boundary behaviour in Panel (b)

As with Example 1 it can be seen that the geodesic

smoothly intersects the boundary of the parameter space.

2.1 The boundary and closures

Before we consider extended exponential families and

their boundaries, we recall the definition of the full ex-

ponential family when embedded in ∆k.

Definition 2 Let π0 = (π0
i ) ∈ int(∆k) (i.e. π0

i > 0,

i = 0, . . . , k), and V be a (k+ 1)× p matrix of the form

(v(1)| . . . |v(p)) = (v0| . . . |vk)T with linearly indepen-

dent columns and chosen such that 1k+1 := (1, . . . , 1)T

/∈ Range(V ). With these definitions there exists a p-

dimensional full exponential family in ∆k, denoted by

π(θ) = π(π0,V )(θ) with general element:

πi(θ) = π0
i exp{(V θ)i − ψ(θ)}

≡ π0
i exp{vTi θ − ψ(θ)}, (3)

i = 0, . . . , k with normalising constant

exp{ψ(θ)} :=

k∑
i=0

π0
i exp{(V θ)i} =

k∑
i=0

π0
i exp{vTi θ},

for all θ ∈ Rp.

The natural parameter space for Model (3) is simply

defined by θ ∈ Rp, because for any such θ, ψ(θ) and

hence the corresponding distribution exists. The situa-

tion is more complex for the mean parameters defined

by

µ = µ(θ) = (µ1, . . . , µp)
T =

(
k∑
i=0

v
(j)
i πi(θ)

)p
j=1

. (4)

The range of the mean parameters is the convex hull

of the k points {v0, . . . , vk} ⊂ Rp. For example these

points, and the corresponding convex hull, are shown

in Fig. 2 (a). Thus the parameter space is the relative

interior of this polytope.

Definition 3 The extended exponential family corre-

sponds to the closure of Model (3) in the space ∆k.

Any point in the Model (3) has the property that πi(θ) >

0 for all i. A distribution on the boundary of the ex-

tended exponential family, π̄, correspond to points on

the boundary of ∆k. They are characterised by a change

of support, so that there exists at least one i ∈ {0, . . . , k}
such that π̄i = 0.

The two parameterisations θ and µ are smooth one

to one functions of each other for the full exponen-

tial family Model (3), see for example [2]. The mani-

fold based information geometry of Amari, and others

[12], is based on the non-linear, but smooth, relation-

ship between these two parameter systems. However as

we approach the boundary the degree of non-linearity

becomes stronger, and breaks down completely at the

boundary; a distribution π̄ will be uniquely charac-

terised by finite moments but there is no corresponding,

finite, natural parameter which corresponding to this

distribution. To clarify this difference we look at what

happens to the natural parameters at the boundary.

We want to consider the limit points of the p-dimensional

full exponential family defined in Def. 2. In particular

consider the limiting behaviour for λ → ∞ of θ = λq

when q ∈ Rp, λ ∈ R, and ‖q‖ = 1, i.e. q lies in the

sphere in Rp. We can think of each such vector q as a

direction in the natural parameter space. From Equa-

tion (3) it is clear that the support of the limiting dis-

tribution is determined by the maximum elements of

the set
{
vT0 q, . . . , v

T
k q
}

.

Define Fq ⊆ I := {0, . . . , k} such that i ∈ Fq if

and only if vTi q is an upper bound of
{
vT0 q, . . . , v

T
k q
}

.

In order to characterise limiting distributions consider

the convex hull, conv{v0, . . . , vk} ⊂ Rp. For any given

unit vector q define the linear function fq(v) = vT q over

this convex set. The function is maximised on the face

defined by vertices {vi|i ∈ Fq}, the upper bounds of{
vT0 q, . . . , v

T
k q
}

. In other words it is maximised at any

point v =
∑
i∈Fq

ρivi where
∑
i∈Fq

ρi = 1 and ρi ≥ 0.

This is just the maximum principle for convex functions

which states a maximum occurs on the boundary which
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is determined by its extremal points corresponding to

Fq.
On the face defined by the vertices {vi|i ∈ Fq} we

have, by definition, that the values vTi q are equal for all

i ∈ Fq hence any point on this face satisfies the linear

relationship ∑
i∈Fq

ρiv
T
i q = bq

where
∑
i∈Fq

ρi = 1 and ρi ≥ 0 and bq is the attained

maximum. Thus we see that q is the normal to a support

plane of the convex hull which contains the face.

Thus certain directional vectors in the natural pa-

rameter space, q, correspond to limiting distributions

whose support is defined by a face of conv{v0, . . . , vk}.
The formal equivalence between the directions in natu-

ral parameter space and the convex hull, which lies in

the mean parameter space is through the concept of a

polar dual of a convex set. This is the set of outward-

pointing unit normal vectors to the supporting hyper-

planes of the set.

Definition 4 For any set E in Rn the set

Eo = {y ∈ Rn|〈y, x〉 ≤ 1,∀x ∈ E}

is called the polar of E. When E is a closed convex cone,

i.e. E is a convex set containing λE for all nonnegative

λ, we have

Eo = {y ∈ Rn|〈y, x〉 ≤ 0,∀x ∈ E}.

For details of the properties of polar sets see Theorem

3 in the Appendix.

Example 3 Returning to Example 2 we see in Fig. 3

Panel (a) the mean parameter space with the polytope

of achievable values in blue. The polar of this polytope

is shown in Panel (b), also in blue. The vertices of this

polar polytope correspond to the directions in the nat-

ural parameter space where the limiting distributions

correspond to an edge of the polytope in (a). For ex-

ample if v is a vertex in (b) then

lim
θ→∞

p(θv) = p

where the moments of p̄ lie on the boundary of the

polytope in (a). In general p will have a smaller support

than the distributions in the interior. Such a vector v

is called a direction of recession.

To illustrate the effect which the boundaries have

on the shape of the likelihood function, and hence on

any posterior, we have also plotted in Fig. 3 (a) and

(b) contours of the log-likelihood (in black). In (a) the

log-likelihood is maximised at a point very near the

boundary and the shape is very far from quadratic. In
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Fig. 3 Likelihood at boundary. Panel (a) shows the mean
parameter space for Example 2 and (in black) the contours
of the likelihood function. Panel (b) shows the natural pa-
rameters for the interior of this model and the polar to the
convex set in (a). The contours of the likelihood function are
in black.

panel (b) the likelihood is stretched in one of the di-

rections of recession. A small perturbation of the data

would put the maximum on the boundary of (a); in (b)

the likelihood would then be maximised at a boundary

point corresponding to a θ →∞ limiting distribution.

3 Fisher geodesics

3.1 Shape of Fisher information

In this section we consider the way that the Fisher

geodesic behaves near, and on, the boundary. Formal

definitions of geodesics can be found in [2] and [12], and

in our Theorem 2 below. First we look at the behaviour
of the Fisher information itself.
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Fig. 4 Fisher geometry in exponential family. Panel (a) uses
the mean parameterization with the shape of the Fisher met-
ric, at six points, represented by ellipses. Panel (b) shows the
polar and the corresponding Fisher metrics in the natural
parameterization.
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Example 4 In Fig. 4 we return again to Example 2 and

show the boundary polytope, in (a), and its polar, in

(b). At a number of points we also plot contours of

the functions ∆(−1)(µ, µ′) = (µ− µ′)T I(µ)(µ− µ′) and

∆(+1)(θ, θ′) = (θ− θ′)T I(θ)(θ− θ′) which are based on

the Fisher information in the mean and natural pa-

rameters respectively. The contours are chosen such

that, with a sample size of 100, the distance corre-

sponds to a 99%-percentile from a χ2
2 random vari-

able, i.e. the ellipses correspond to inferentially relevant

regions under a first order asymptotic approximation.

Such quadratic measures where used in [3] to deter-

mine when the boundary is close enough to effect the

adequacy of first order asymptotics.

We see in this example, and in general, that the lo-

cal geometry, as determined by the Fisher information,

changes near the boundary. The contour labelled ‘x’ is

near the center of the model, far from any boundary and

is approximately circular in the scale plotted. Contours

‘y’ and ‘z’ are much nearer the boundary, in Panel (a),

they have adapted their shape such that the dominant

eigenvector of the corresponding quadratic form is par-

allel to the relevant part of the boundary. In contrast,

in Panel (b) the corresponding contours are elongated

so that the dominant eigen-vector is parallel to the cor-

responding direction of recession. That in the direction

of recession of the relevant vertex of the polar set.

In the example we see that in both parameters the

Fisher information, and hence the Riemannian struc-

ture, adapts to take into account the boundary, in the

mean parameters and the limiting structure at infinity,

in the natural. This behaviour can be formalised by the

following result.

Theorem 1 (a) Let µi be a sequence of points in the

mean parameter space which converge to µ, which lies

on a face of the boundary polytope, defined by the half

space 〈a, µ〉 ≤ 1.

Let I(µ) be the Fisher information, λmin(µ) its min-

imum eigenvalue and emin(µ) the corresponding eigen-

vector. Then

lim
i→∞

λmin(µi) = 0

and limi→∞ emin(µi) = a.

(b) Let θi be the corresponding sequence to µi in

the natural parameters, I(θ) := I(µ(θ))−1 the Fisher

information, with λmax(θ) its maximum eigenvalue and

emax(µ) the corresponding eigenvector. Then

lim
i→∞

λmax(θi) = 0

and limi→∞ emax(θ) = a, which is the vertex in the po-

lar which corresponds to the face in (a).

3.2 Boundary behaviour of Fisher geodesics

Consider again Example 1, where the Fisher geodesic

has a simple closed form, [2] or [12]. It can be easily

seen, for example in Fig. 1, that the geodesic touches

the boundary in a smooth way. In fact since the path

shown in the figure intersects the boundary it is more

general than a geodesic in a smooth manifold, which

would be restricted to the relative interior. This exam-

ple motivated the following definition.

Definition 5 LetM be an extended exponential fam-

ily, which can be written as the union
⋃N
i=1Mi of ex-

ponential families. A curve γ : [0, T ] →M is called an

extended geodesic if (a) it is smooth in M and (b) its

restriction to each manifold Mi is a geodesic.

Example 5 In Example 1 the curve shown Fig. 1 is

an extended geodesic since it is the union of geodesics

curves which are smoothly connected. It has three com-

ponents in the relative interior of the simplex – which

is an exponential family – and three components in the

relative interiors of the three faces – each of which is

also an exponential family.

We can characterise geodesics in extended exponen-

tial families as being curves of (locally) minimum length

in the same way we would in exponential families, with

the behaviour of the Fisher information at the bound-

ary (Theorem 1) adding a natural geometric constraint.

It is sufficient to consider paths of (locally) mini-

mum length which connect a point µ0 in the relative in-

terior of the mean parameter polytope and µ1 which lies

on a face defined by a half space condition 〈a, µ〉 ≤ 1.

For a curve connecting these two points to have min-
imal length, it is of course necessary that this length

be finite. This motivates looking at the set of smooth

paths

P :=
{
γ : [0, 1]→M|γ(0) = µ0, γ(1) = µ1, D(γ) <∞

}
where

D(γ) :=

∫ 1

0

√
〈γ′(s), γ′(s)〉γ(s)ds <∞.

and defining an extended geodesic to be arg minP D(γ).

Theorem 2 (a) The extended geodesic satisfies the equa-

tions

d2µi
dt2

+
∑
p,q

Γ ipq
dµp
dt

dµq
dt

= 0 (5)

where

Γ kij =
1

2

∑
k,l

Ikl
(
∂Ili
∂µj

+
∂Ilj
∂µi
− ∂Iij
∂µl

)
,
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in the relative interior of the natural parameter space.

Note that the dependence on θ has been dropped for clar-

ity and Ikl := I−1kl .

(b) The extended geodesic has the property that γ′(1)

is tangent to the face containing µ1.

4 Applications

In this section we look at two of the key examples of

[11] where it was shown that the geometric approach

to designing MCMC algorithms created excellent re-

sults. In Example 6 we look at a (discretised) version of

the normal model and in Example 7 we look at logistic

regression. Note that [4] shows that the information ge-

ometry of a continuous model, such as the normal, can

be arbitrarily well approximated by a discrete model

by discretising the sample space to a fine enough level.

Thus there is no real loss in Example 6 in using the

embedding inside a high dimensional simplex.

Example 6 Discretised Normal. In Fig. 5 we see a plot

of the mean parameter space for Model 2 where we have

chosen a large number of bins relative to the standard

deviation of the underlying random variable. Thus this

is a finite, discretised version of the normal distribution.

The polytope boundary, in the space
(
E(X), E(X2)

)
is

well approximated by the continuous curve defined by

V ar(X) = E(X2)− E(X)2 = 0,

as can be clearly seen in the figure. In the plot the red

curves are level sets of the Fisher geodesic distance –

which has a closed form in the normal model. We see

that this distance respects the polytope boundary.
In [11] the normal example was used to demonstrate

the way that the Riemannian based MCMC algorithm

was very efficient near the boundary. We can see the

way the the Fisher metric, and associated Riemannian

geometry, adapts to the global geometry of the bound-

ary here.

Example 7 Logistic regression The second example from

[11] considered here is the case of logistic regression.

The information geometry of this example has been

considered in [3] where it was shown how the Fisher

metric near the boundary determined the quality of

the first order asymptotic approximation. In this ex-

ample the Fisher geodesic no longer is in closed form,

and hence has to be computed numerically. This was

done, in the relative interior using the R function ode

{deSolve}, [15], which solves the system of ordinary dif-

ferential equations given in Theorem 2.

Fig. 6 shows the image of the geodesic, in red, and

the boundary of polytope of the mean parameter space.

−10 −5 0 5 10

0
20

40
60

80
10

0

Fisher Geodesic

E(X)

E
(X

^2
)

Fig. 5 Geometry of the discretised Normal. The boundary
of the mean parameterization for the (discretised) normal is
closely approximated by a parabola. The level sets of the
Fisher geodesic distance from an interior point are shown in
red.
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Fig. 6 Geometry of logistic regression: the red line is the
Fisher geodesic while the black line is the boundary in the
mean parameter space

As can be seen the Fisher geodesic is highly non-linear

but does, as predicted, smoothly approach the bound-

ary.

5 Discussion

This paper looks at the Information Geometry – in par-

ticular the Fisher Riemannian geometry – of a broad

class of extended exponential families, such families meet-

ing their boundaries. Strong non-linearity between the

mean and natural parameters in an exponential fam-

ilies corresponds to strong departures from quadratic

behaviour for the log-likelihood and corresponding log-

posterior, see Fig. 3. Furthermore the strength of non-

linearity increases without limit as we approach the

boundary of the extended exponential family. This goes

some way to explain the success of Riemannian based

MCMC methods, since the Fisher metric is the appro-
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priate adjustment between the two parameterizations.

See in particular Fig. 4.

We note, however, as described by [14], that the

metric used in geometric MCMC is an adapted version

of the Fisher Information rather than the exact version

discussed in this paper. For example [11] proposed using

Ey|x
[
− ∂2

∂xi∂xj
log f(y|x)

]
− ∂2

∂xi∂xj
log π0(x), (6)

where π(x|y) ∝ f(y|x)π0(x) is the target density for

the MCMC, f denotes the likelihood and π0 the prior.

The additional term is designed to allow for the effect of

the prior. Note that such a formulation allows the pos-

sibly that (6) is not positive definite, and also that it

does not transform according to standard metric tensor

rules. Nevertheless, it might be hoped that the nice ge-

ometry of the Fisher Information might transfer across

to geometries defined by (6). We note that it does in

commonly used examples, such as the conjugate Dirich-

let prior for a multinomial model. There, the adaptation

results in a scaled version of the Fisher Information and

all properties discussed in this paper would naturally

still apply.

For concreteness, consider the simple example of the

binomial model where, in the natural parameterisation,

θ, the Fisher information is

nπ(θ)(1− π(θ)) = n
exp(θ)

(1 + exp(θ))2

which goes to zero as θ → ±∞. With the (conjugate)

Beta(α, β) prior the negative hessian of the log prior is

given by

(α+ β − 2)
exp(θ)

(1 + exp(θ))2

i.e. a scaled version of the Fisher information, with the

same boundary behaviour. However, if a normal prior –

on the natural parameter scale – were selected, the hes-

sian of its log would not tend to zero as θ → ±∞ and

we would see qualitatively different behaviour from (6)

at the boundary than that of the Fisher Information.

It is therefore an interesting open issue to describe the

complete relationship between prior choice, MCMC de-

sign and the appropriate geometric behaviour near the

boundary.

Note this paper has looked at the behaviour of met-

rics and their corresponding geodesics near boundaries.

An interesting open question, for further investigation,

is the extent to which the properties of (extended) geodesics

may be directly related to algorithmic performance.

The behaviour of the corresponding Fisher geodesic at

the boundary, in particular the way it smoothly at-

taches to the boundary, also points to ways that the

Riemannian structure can be further exploited by MCMC

methodology. It gives a geometrically, and statistically,

natural way to connect models with different support

sets. This raises the intriguing possibility that the Fisher

geodesic could be used to construct trans-dimensional

MCMC algorithms which work across models with dif-

ferent supports.

Appendix

Details of Example 2

The following details of Example 2 may be helpful. In

the paper [1] the distribution over {0, 1, . . . , k} is de-

fined, up to proportionality, by

P (Z = z; p, θ) ∝
(
k

z

)
pz(1− p)k−zθz(k−z),

where 0 < p < 1 and θ > 0. This can be written in

exponential family form as

P (Z = z; p, θ) ∝
(
k

z

)
exp {z log(p/(1− p)) + z(k − z) log θ} ,

where the natural parameters are log(p/(1 − p)), log θ

and sufficient statistics are z, z(k−z). A affine transfor-

mation then takes this model to the form used in this

paper.

Polar structures

Theorem 3 (i) The polar Eo of any set E is a closed

convex set containing the origin; if E ⊂ F then F o ⊂
Eo (ii) E ⊂ Eoo; if E is closed convex and contains the

origin the Eoo = E; (iii) 0 ∈ intE if and only if Eo is

bounded.

The system

〈ai, x〉 ≤ bi
by shifting the origin to zero and dividing can be written

as

〈ai, x〉 ≤ 1, i = 1, . . . , p, (7)

〈ai, x〉 ≤ 0, i = p+ 1, . . . , n (8)

Let P be polyhedron define by (7) and (8), then the polar

of P is the polyhedron

Q = conv{0; a1, . . . , ap}+ cone{ap+1, . . . , am}

and conversely, the polar of Q is the polyhedron P .

If P is bounded then 0 ∈ P o and

Q = conv{a1, . . . , ap}

Proof See [17] Prop 1.21 (page 28).
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