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Summary

We suppose a case is to be compared with controls on the basis of a test that gives

a single discrete score. The score of the case may tie with the scores of one or

more controls. However, scores relate to an underlying quantity of interest that

is continuous and so an observed score can be treated as the rounded value of an

underlying continuous score. This makes it reasonable to break ties. This paper

addresses the problem of forming a confidence interval for the proportion of controls

that have a lower underlying score than the case.

In the absence of ties, this is the standard task of making inferences about a

binomial proportion and many methods for forming confidence intervals have been

proposed. We give a general procedure to extend these methods to handle ties, under

the assumption that ties may be broken at random. Properties of the procedure are

given and an example examines its performance when it is used to extend several

methods. A real example shows that an estimated confidence interval can be much

too small if the uncertainty associated with ties is not taken into account. Software

implementing the procedure is freely available.

Keywords: coverage; Clopper-Pearson interval; credible interval; discrete distribu-

tion; multiple ties; Wald interval

1. Introduction

The problem that motivated the present research arises commonly in the prac-

tice of medicine, psychology and education. Scores y1, . . . , yn are obtained for
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a random sample of n people from a population of controls. A case has a score

y# and the case is to be compared with the controls. Scores are discrete so y#

may equal one or more of the yi. However, the scores relate to an underlying

quantity of interest that is continuous so an observed score can be treated as

the rounded value of some underlying continuous score. This means that it is

reasonable and desirable to break ties. For example, on a memory test or on

an anxiety scale a case’s score may equal the scores of some controls, while

the case’s underlying memory ability or anxiety level does not exactly equal

the memory ability or anxiety level of any control, as both these constructs are

assumed to be continuous variables. The task we address is to make inferences

about the proportion of controls, p say, who have a lower underlying score than

the case. In the absence of ties, this task is essentially the standard problem of

making inferences for a binomial proportion: inferences are to be made about

the probability of success (p) on the basis of n trials, where the ith trial is a

success if yi is less than y# and it is a failure if yi is greater than y#.

To make inferences about p when ties are present, some assumption (or

assumptions) about ties is necessary. We make the assumption that, in breaking

ties, all possible results from tie-breaking are equally likely. Specifically, suppose

the score of the case equals that of t controls. If the case and these controls were

given further tests so as to break all ties, then the case and controls could be

ranked from 1 to t+1. Our assumption is that the case is equally likely to have

any one of these ranks. More precisely, let S denote the number of controls in

the sample whose scores are less than y# and let T denote the number whose

scores tie with y#. Also, let X denote the (unknown) number whose underlying

score is less than y. Then the assumption states that

Pr(X = x |S = s, T = t) =





1/(t + 1) for x = s, s + 1, . . . , s + t.

0 otherwise.
(1)

Typically, this assumption is reasonable unless the case has the joint-lowest

(or joint-highest) score, when it may be clear from circumstances that the case

is quite likely to have a more extreme underlying score than any of the controls.

To illustrate the latter, suppose psychological tests are given to a case because
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the case has suffered a head injury. If the case gets the minimum possible

score on a test, there may be a distinct possibility that brain injury is affecting

the case’s performance and that the case’s underlying score is well outside the

normative range. Even if a few controls also obtain the minimum possible

score, this may still seem likely. In such situations the methods proposed here

should not be used. Alternative strategies include using Bayesian methods with

informative prior distributions. This approach has been used to handle zero

binomial outcomes [9,15] and might be extended to handle ties.

Difficulties caused by ties have been considered in the context of hypoth-

esis testing but have not been addressed in the context of confidence interval

estimates. In hypothesis testing, common ways of handling ties are either (a) to

ignore them and reduce the sample size, or (b) divide the ties in two, treating

half of them as successes and the other half as failures [5,8,11]. Approach (a)

can be sensible, as, for example, in problems where McNemar’s test should be

used. However, it is inappropriate when forming a confidence interval for the

proportion of controls who have a smaller underlying score than the case, or

other questions addressed here. Approach (b) is an over-simplification. It ig-

nores the uncertainty that arises from ties and can lead to confidence intervals

that are too narrow. Our assumption leads to methods that are clearly better

than (a) or (b) for the contexts we consider.

A substantial body of work concerns the sign test and its treatment of

ties [4,12,13]. Rather than p, this work focuses on slightly different parameters:

p+, p0 and p−, where these denote the probability of a success, the probability

of a tie, and the probability of a failure, respectively. The aim has been to

test whether p+ equals p−, rather than to make inferences about p = p+ + 1
2
p0,

focusing on the asymptotic efficiencies of different test procedures. The work

uses approaches (a) and (b) for handling ties and also various other approaches.

For example, Woodbury et al. [16] suppose that a sequence of paired trials

are conducted to compare two treatments. The result of each trial may favour

one of the treatments or it may be a tie, and each tie is broken at random. If

there are t ties, then this situation has t separate ties where each tie involves

two items, rather than the situation we consider, where there is a multiple tie
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between t controls and a case. This latter situation does not seem to have been

considered before.

We address the task of forming confidence interval for a binomial propor-

tion when there are ties but equation (1) holds. The simpler case in which there

are no ties has attracted much attention. This is largely because problems of

discreteness result in confidence intervals that seldom have the nominal cov-

erage probability. Some of the methods that have been proposed for forming

confidence intervals can guarantee having a coverage that is no smaller than the

nominal probability. However, these methods have been criticized as being too

conservative, erring too heavily on the side of caution. Other methods may not

guarantee being conservative, but may be conservative for most values of p and

may typically give coverage probabilities that are close to the nominal value.

Good reviews of methods are given by Agresti and Coull [1], Newcombe [10]

and Brown et al. [2].

To cover a number of methods of forming confidence intervals relatively

succinctly we group them as Wald-form methods, exact-form methods, score-

form methods and Bayesian methods. In the absence of ties, Wald-form meth-

ods include the Wald method (with and without a continuity correction) and

Agresti-Coull intervals. Exact-form methods include Clopper-Pearson intervals

and mid-p intervals, while score-form methods include the Wilson score method

(with and without a continuity correction). Bayes methods require a prior

distribution that is usually assumed to be a beta distribution, which is the con-

jugate distribution. We describe these methods, extend them to handle ties,

and examine their coverage.

In Section 2 we give a general procedure for extending a method of forming

confidence intervals so that it can handle ties that satisfy equation (1). We also

give conditions under which the procedure is no more liberal than the method

it extends. In Section 3 we briefly review methods of forming interval estimates

for a binomial proportion and extend them to handle ties by applying our pro-

cedures. In Section 4 we examine the coverage probabilities of intervals and

compare our procedure when ties are present with the equivalent method when

ties are absent. We find that intervals are typically more conservative when ties
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are present. The proposed procedure has been implemented in freely available

software and details are provided in Section 5. Some concluding comments are

given in Section 6. The work reported here underpins methods of forming con-

fidence intervals that are proposed in Crawford, Garthwaite and Slick [7] and

Crawford et al. [6].

2. General procedure

Throughout we assume that an equal-tailed 100(1− 2α)% confidence interval is

required. Thus if l and u are the lower and upper confidence limits, then (0, u)

and (l, 1) are both 100(1− α)% confidence intervals for p. We refer to these as

the upper-tailed and lower-tailed 100(1−α)% confidence intervals, respectively.

The reason for introducing these one-tailed intervals is that they are defined for

0 ≤ α ≤ 1, while equal-tailed intervals are only defined for 0 ≤ α ≤ 0.5. To

handle ties we will consider confidence intervals that have many different levels

of confidence, even though we only construct 100(1−2α)% confidence intervals.

The methods of forming confidence intervals that we extend to handle ties

must satisfy standard regularity conditions. In particular, if (l1, u1) and (l2, u2)

are equal-tailed confidence intervals with confidence levels of 100(1− 2α1) and

100(1 − 2α2), respectively, we require l1 ≤ l2 and u2 ≤ u1 if α1 < α2. In most

contexts, a nominal confidence level is specified (say 95%) and the confidence

limits are then determined. Here, in contrast, for the upper limit we wish to

specify a value u and ask:

What confidence level should be associated with the interval (0, u)? That

is, for what value of γ is (0, u) an upper-tailed 100(1 − γ)% confidence

interval?

Some standard methods of forming confidence intervals can give upper limits

that are above 1 if they are not reduced to equal 1. For these methods, a range

of values of γ will yield an upper-tailed 100(1 − γ)% confidence interval when

u = 1. However, we assume that, if u 6= 1, then the above question has a unique

answer when x successes (and no ties) have been observed. We define γ(x, u)

to be that value. When u = 1, we put γ(x, u) = 0. For the lower confidence
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limit, l, we equivalently define η(x, l) to be the value of η for which (l, 1) is a

100(1 − η)% lower-tailed confidence interval. We assume this uniquely defines

η(x, l) for l 6= 0, and put η(x, l) = 0 for l = 0. We further assume that, for any

x, γ(x, u) is a continuous function of u for u ∈ [0, 1) and η(x, l) is continuous

function of l for l ∈ (0, 1].

Our general strategy for extending a method to handle ties is as follows.

When s successes and t ties have been observed, but x is unknown, we set the

upper limit of the confidence interval equal to u∗, where u∗ is the smallest value

that satisfies
∑s+t

x=s γ(x, u∗)/(t + 1) ≤ α. As γ(x, u) is continuous for u ∈ [0, 1),

this uniquely defines γ(x, u∗) and

s+t∑
x=s

γ(x, u∗)/(t + 1) = α (2)

if u∗ 6= 1. The intuitive idea is that x is equally likely to take any of the values

s, . . . , s+t and α is the average of γ(x, u∗) as x ranges over these values. For the

lower limit we set l∗ equal to the largest value that satisfies
∑s+t

x=s η(x, l∗)/(t +

1) ≤ α. For l 6= 0,
s+t∑
x=s

η(x, l∗)/(t + 1) = α. (3)

A separate search is conducted for each limit. Each search only involves a single

scalar parameter and is very fast on a computer. To tailor our procedure to a

given method of forming confidence intervals only requires γ(x, u) and η(x, l)

to be specified.

We wish to examine properties of the coverage of our procedure. In the

absence of ties, the definition of a confidence interval means that, in principle,

γ(x, u) = P (X ≤ x | p = u). (4)

Several methods of forming confidence intervals will only satisfy equation (4)

approximately, either because they use asymptotic approximations or because

they aim for better coverage overall by being a little liberal for some values of

p. (The discreteness of X does not prevent (4) from holding as, given x, γ(x, u)

is continuous function of u.) We define ψ(x, u) by

ψ(x, u) = γ(x, u)− P (X ≤ x | p = u). (5)
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If we were seeking a 100(1 − α)% upper-tailed confidence interval and α =

γ(x, u), then 1− P (X ≤ x | p = u) would be the actual coverage of the method

of forming confidence intervals when p = u. Also, ψ(x, p) would be the difference

between the nominal and actual coverages.

When ties are present, let U∗ be the random variable that denotes the

upper limit of the 100(1 − α)% upper-tailed confidence interval given by our

procedure. U∗ depends on S and T . For any given p, the coverage is P (U∗ ≥ p).

The following proposition relates this coverage to the ψ(x, u). A proof of the

proposition is given in an appendix.

Proposition 1. Given p and T = t, let s∗(t) denote the largest value of S such

that
s∗(t)+t∑

x=s∗(t)
γ(x, p)/(t + 1) ≤ α. (6)

Also, let m denote the largest value taken by s∗(t) + t as t varies and suppose

P (S = s | t) ≥ P (S = s − 1 | t) for all s ≤ m and any t. If equation (1) holds,

then

P (U∗ ≥ p) ≥ (1− α) +
n∑

t=0

s∗(t)+t∑

x=s∗(t)
P (T = t).{ψ(x, p) + h(x, t)}/(t + 1) (7)

where equation (2) gives the value of u∗ that is taken by U∗ when S = s and

T = t, and

h(x, t) = P (X ≤ x)− P (X ≤ x | t). (8)

It is difficult to construct a situation where P (S = x |T ) ≥ P (S = x−1 |T )

for some x ≤ m, as m is almost inevitably in the lower tail of the distribution

of S. (Exceptions arise when n is very large and either p or 1− p is very small.)

Hence the conditions of the proposition generally hold if equation (1) holds. An

equivalent result to Proposition 1 holds for the lower limit.

It is helpful to explore further the relationship given by equation (7). For

i ≤ t, let Ai =
∑i

j=1 P [S = s∗(t) − i + j|t] and Bi =
∑t+1

j=1 P [S = s∗(t) − i +

j|t]{i/(t + 1)}. If s∗(t) + t is in the lower tail of the distribution of S, then

Bi will usually be greater than Ai unless t = 0. Typically, the difference is

noticeable for non-zero t and increases with t. The relevance of Ai and Bi is
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that they determine the tightness of the inequality in (7): by modifying the

proof of Proposition 1 it can be shown that P (U∗ ≥ p) exceeds the right-hand

side of (7) by at least

n∑

t=0

{P (T = t)
t∑

i=1

(Bi − Ai)}. (9)

In contrast, equation (8) suggests that h(x, t) will generally be small. Coupled

with the fact that
∑n

t=0

∑s∗(t)+t
x=s∗(t) P (T = t)h(x, t) = 0, it follows that

n∑

t=0

s∗(t)+t∑

x=s∗(t)
P (T = t)h(x, t)/(t + 1) (10)

is likely to be very small. Usually then, the quantity in (9) will be positive and

non-trivial in size while the quantity in (10) is likely to be small (and it may

well be negative). Whenever the quantity in (9) is greater than the quantity in

(10),

P (U∗ ≥ p) ≥ (1− α) +
n∑

t=0

s∗(t)+t∑

x=s∗(t)
P (T = t).ψ(x, p)/(t + 1). (11)

We believe that (11) will typically hold, although it does depend on the distri-

bution of the number of ties and it may not hold for some distributions.

When equation (11) holds, it clarifies the relationship between the coverage

of a method of forming confidence intervals (in the absence of ties) and the

coverage of the procedure constructed from that method in order to handle ties.

It gives the following results, which are proved in the appendix.

Proposition 2. Suppose equation (11) holds and that a given method for forming

confidence intervals (when there are no ties) is conservative for all confidence

levels. Then the proposed procedure for forming confidence intervals from that

method when ties are present is also conservative.

Proposition 3. Suppose equation (11) holds and we have constants λ1 and λ2,

with λ2 ≥ 0, such that ψ(x, p) ≥ λ1 − λ2γ(x, p) for all x and p. Then the

proposed procedure for forming a 100(1 − α)% upper-tailed confidence interval

has coverage that is no less than (1− α) + λ1 − λ2α.

Propositions 2 and 3 suggest that the procedure for forming confidence

intervals in the presence of ties will tend to have greater average coverage than
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the method from which it is derived. The coverage will also tend to increase as

the number of ties increases (from equation (9)). The examples in Section 4 will

illustrate this. Proposition 3 does not hold for negative values of λ2 because

of the discreteness of a binomial distribution. Given p, if for every value of t

there existed an integer s∗(t) for which
∑s∗(t)+t

x=s∗(t) γ(x, p)/(t+1) = α (rather than

the inequality in (6)), then the proposition would hold for all λ2. Discreteness

should only have a marginal effect, so Proposition 3 will not be far from holding

for all λ2.

The procedure described here is useful, not only when sampling is from

a binomial distribution, but in other situations where there are multiple ties

that can be broken at random as in equation (1). Moreover, the proofs of

Propositions 1–3 make little use of the precise form of the sampling model,

so that they hold more generally (e.g. in forming confidence intervals for the

parameter of a Poisson distribution).

3. Specific methods

In this section we review specific methods for forming confidence intervals in

the absence of ties and extend the methods to handle ties by giving explicit

formulae for γ(x, u) and η(x, l).

3.1. Wald-form methods

Let zα denote the 1 − α quantile of a standard normal distribution. Suppose

there are no ties and x successes in n trials. Then the 100(1− 2α)% confidence

interval given by Wald-form methods is

p̃ ± [zα{p̃(1− p̃)/ñ}1/2 + c1] (12)

where p̃ is a point estimate of p and 0 ≤ c1 < 1. In the simple Wald method

(the standard method taught in most elementary statistics textbooks), ñ = n,

p̃ = x/n and c1 = 0. A continuity correction is added by setting c1 = 1/(2ñ).

For 95% confidence intervals, Agresti and Coull [1] suggest adding two to both

the number of successes and the number of failures (i.e. put ñ = n + 4 and

p̃ = (x+2)/ñ), as this improves the coverage probability of intervals. This could
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also prove useful for other levels of coverage, as the pathological cases where

x = 0 or x = n have a smaller adverse impact on coverage if two is added to the

number of successes and the number of failures. For other levels of confidence,

Brown et al. [2] generalize the Agresti-Coull interval by setting ñ = n + z2
α,

p̃ = (x + z2
α/2)/ñ and c1 = 0. The formula in (12) can yield confidence limits

that are outside the feasible range of [0, 1], so they may require truncation.

However, the Agresti-Coull method in particular gives 95% confidence intervals

that have reasonably accurate coverage for moderately large n; Brown et al. [2]

recommend its use for n ≥ 40.

To extend Wald-form methods to handle ties, define γ(x, u∗) by

u∗ = p̃ + [zγ(x,u∗){p̃(1− p̃)/ñ}1/2 + c1] (13)

when p̃(1− p̃) 6= 0. To handle pathologies, when p̃(1− p̃) = 0 put

γ(x, u∗) =





0 if u∗ < p̃ + c1 or if u∗ = p̃ + c1 and p̃ = 1

1 if u∗ > p̃ + c1 or if u∗ = p̃ + c1 and p̃ = 0 .

For the lower limit, define η(x, l∗) by

l∗ = p̃ − [zη(x,l∗){p̃(1− p̃)/ñ}1/2 + c1] (14)

when p̃(1− p̃) 6= 0 and, when p̃(1− p̃) = 0, put

η(x, l∗) =





1 if l∗ < p̃− c1 or if l∗ = p̃− c1 and p̃ = 1

0 if l∗ > p̃− c1 or if l∗ = p̃− c1 and p̃ = 0 .

Then, when there are s successes and t ties, the confidence limits are obtained

via our general procedure, using equations (2) and (3).

An advantage of Wald-form methods is that they are easy to apply when

there are no ties as intervals are readily calculated without a computer. This

benefit is lost with our procedure when ties are present as searches are needed to

find the confidence limits. Wald-form methods can have poor coverage, so the

main reason for using them when there are ties, rather than using alternative

methods, would be their greater familiarity to most people.

Extending the method of Brown et al. [2] to handle ties is messy. With

their method, the adjustments that give ñ and p̃ depend upon the confidence
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level, while the confidence level depends upon ñ and p̃. Hence an additional layer

of iteration is required. We will not consider Brown et al.’s method further here,

as it is not widely used when there are no ties, and ties stop it from being a

comparatively simple method to use.

3.2. Score-form methods

The 100(1−2α)% confidence interval for p given by score-form methods consists

of all θ that satisfy
|θ − (x/n)| − c2

{θ(1− θ)/n}1/2
≤ zα (15)

where 0 ≤ c2 < 1. Setting c2 = 0 gives the Wilson score-form method [14]

and putting c2 = 1/(2n) gives a continuity correction to the score-form method.

Confidence limits can be found by inverting (15) to give bounds on the value

of θ [9]. The theoretical appeal of the Wilson interval is that it is equivalent

to an equal tail score test of the hypothesis H0 : p = θ. Assuming the normal

approximation to the binomial is used, H0 is rejected at the 2α significance

level if and only if θ is within the 100(1−2α)% confidence interval. Equivalence

is retained if both the hypothesis test and confidence interval method use a

continuity correction. (Score tests are based on the log likelihood at the value

of the parameter under the null hypothesis, whereas Wald tests are based on

the log likelihood at the parameter’s maximum likelihood estimate.) Although

score form methods of forming confidence intervals are not strictly conservative,

their coverage probability tends to be close to the nominal value even for very

small sample sizes [8]. Their use is widely recommended because of their good

coverage [9, 10].

To extend the methods to handle ties requires γ(x, u∗) and η(x, l∗). They

are defined by

zγ(x,u∗) = {u∗ − (x/n)− c2}/{u∗(1− u∗)/n}1/2 if u∗(1− u∗) 6= 0

and

zη(x,l∗) = {(x/n)− l∗ − c2}/{l∗(1− l∗)/n}1/2 if l∗(1− l∗) 6= 0.
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If u∗(1− u∗) = 0, then

γ(x, u∗) =





0 if u∗ < x/n + c2 or if u∗ = x/n + c2 and x/n + c2 = 1

1 if u∗ > x/n + c2 or if u∗ = x/n + c2 and x/n + c2 = 0 .

If l∗(1− l∗) = 0, then

η(x, l∗) =





1 if l∗ < x/n− c2 or if l∗ = x/n− c2 and x/n + c2 = 1

0 if l∗ > x/n− c2 or if l∗ = x/n− c2 and x/n + c2 = 0 .

3.3. Exact-form methods

When there are x successes and no ties, the equal-tailed 100(1−2α)% confidence

interval given by exact-form methods is (l, u) where u is the largest value in

[0, 1] for which

c3P (X ≤ x| p = u) + (1− c3)P (X ≤ x− 1| p = u) ≥ α (16)

and l is the smallest value in [0, 1] for which

c3P (X ≥ x| p = l) + (1− c3)P (X ≥ x + 1| p = l) ≥ α, (17)

where 1 ≥ c3 > α. Setting c3 = 1 gives the Clopper-Pearson method and

putting c3 = 1/2 gives the mid-p method. The Clopper-Peason method is

guaranteed to be conservative and is commonly treated as the gold-standard

method [1]. It inverts the hypothesis test H0 : p = θ where the test uses exact

binomial probabilities; θ is within the Clopper-Pearson interval if and only if

H0 is not rejected at the 2α level of significance. Since the Clopper-Pearson

interval inverts a test of the same hypothesis as the Wilson interval but uses

exact probabilities, rather than a normal approximation, the Clopper Pearson

interval might be expected to be preferable to the Wilson interval, other than

for reasons of computational convenience. However, unlike the Wilson method,

the Clopper-Pearson method is widely regarded as being too conservative. For

example, Agresti and Coull [1, p. 119] comment that its “. . . actual coverage

probability can be much larger than the nominal confidence level unless n is

quite large, and we believe it is inappropriate to treat this approach as optimal
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for statistical practice.” In comparison, mid-p intervals are better regarded as

they give coverage probabilities that are generally close to the nominal value;

Brown et al. [2, p. 115] comment that “they are known to have good coverage

and length performance.”

Tail-areas of a binomial distribution and a beta distribution are related.

If fB(ξ; a, b) is the probability density function of a beta distribution with pa-

rameters a and b, then (16) and (17) can be expressed as

c3

∫ 1

u
fB(ξ; x + 1, n− x)dξ + (1− c3)

∫ 1

u
fB(ξ; x, n− x + 1)dξ ≥ α (18)

and

c3

∫ l

0
fB(ξ; x, n− x + 1)dξ + (1− c3)

∫ l

0
fB(ξ; x + 1, n− x)dξ ≥ α, (19)

respectively. These expressions are useful for computation and also help com-

pare exact-form confidence intervals with Bayesian credible intervals.

To extend exact-form methods to handle ties we simply put

γ(x, u∗) = c3

∫ 1

u∗
fB(ξ; x + 1, n− x)dξ + (1− c3)

∫ 1

u∗
fB(ξ; x, n− x + 1)dξ

and

η(x, l∗) = c3

∫ l∗

0
fB(ξ; x, n− x + 1)dξ + (1− c3)

∫ l∗

0
fB(ξ; x + 1, n− x)dξ.

3.4. Bayesian credible intervals

Bayesian credible intervals may be regarded as confidence intervals when esti-

mating a binomial proportion. They probably will not meet the strict definition

of a confidence interval, in that their actual coverage for a given p may sometimes

be less than their nominal coverage, but this is true of many well-recommended

methods of forming confidence intervals for a binomial proportion.

For a Bayesian analysis, a prior distribution for p must be specified. Most

commonly it is assumed that the prior distribution is a beta distribution as this

is the conjugate distribution for binomial sampling: if the prior distribution is

beta(a, b) and x successes and no ties are observed in n trials, then the posterior
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distribution is another beta distribution, beta(x + a, n− x + b). Then (l, u) is

the equal-tailed 100(1− 2α)% credible interval for p if u is the largest value in

[0, 1] for which ∫ 1

u
fB(p ; x + a, n− x + b)dp ≥ α.

and l is the smallest value in [0, 1] for which

∫ l

0
fB(p ; x + a, n− x + b)dp ≥ α.

Values of a and b are generally chosen to be noninformative, with either

a = b = 1/2, or a = b = 0, or a = b = 1. Setting a and b equal to 1/2 gives

Jeffreys’ prior and with this choice the endpoints of the credible interval are

usually very close to the endpoints of the mid-p confidence interval (obtained

when c3 = 1/2 in (18) and (19)). A beta(a, b) distribution can be equated to

observing a successes and b failures in a+b trials. (For example, the mean of the

distribution is a/{a + b}.) Thus, setting a = b = 0 might be construed as the

natural choice as a noninformative distribution. At the same time, putting a =

b = 1 gives the uniform distribution whose flat shape might also be considered

noninformative. In the literature on forming interval estimates for binomial

proportions though, Jeffreys’ prior is generally used.

Coverage is only a frequentist property and not a Bayesian concept. How-

ever, if a method is to be judged by the simple average of its coverage as p

ranges over its possible values, then the Bayesian method that uses a uniform

prior will seem perfect, with an average coverage exactly equal to the nominal

confidence level. This is because a uniform prior is equivalent to letting p range

over its possible values, with each value equally likely, precisely as in the method

of determining average coverage. Credible intervals derived from Jeffreys’ prior

typically also have good coverage. This is perhaps unsurprising as a Jeffreys’

prior and a uniform prior will usually lead to similar posterior distributions and,

in addition, credible intervals for Jeffreys’ prior are similar to mid-p intervals.

Using Bayesian methods with Jeffrey’s prior is widely recommended as a means

of forming interval estimates [2,3].

When there is a multiple tie, our general method for forming confidence
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intervals can be applied. If the prior distribution is beta(a, b), we put

γ(x, u∗) =
∫ 1

u∗
fB(ξ; x + a, n− x + b)dξ

and

η(x, l∗) =
∫ l∗

0
fB(ξ; x + a, n− x + b)dξ.

4. Coverage probabilities

We wish to examine the performance of our procedures for handling ties and

to compare different methods of forming confidence intervals in the presence of

ties. The primary measure of performance is the coverage of confidence intervals.

Ideally, the coverage should exactly equal the nominal confidence level for every

value of p, with equal coverage in each tail, as the intention is to form equal-

tailed confidence intervals. When the coverage does not equal its nominal level

then:

(a) It is better for the coverage to be too large rather than too small, as that

is consistent with the definition of a confidence interval.

(b) The length of the confidence interval is of interest, as much narrower confi-

dence intervals might be considered reasonable compensation for intervals

that are too liberal for some values of p.

Given p and n, let L and U be random variables that denote the lower

and upper confidence limits. Their values depend on X (if there are no ties) or

S and T (if there are ties) and the coverage probability, Cn(p), is given by

Cn(p) = Pr(L ≤ p ≤ U).

Ideally, Cn(p) should equal 1− 2α for 100(1− 2α)% confidence intervals. In the

literature, interest has focused on Cn(p) but here we also consider Pr(p < L)

and Pr(p > U), referring to these probabilities as the lower-tail coverage and the

upper-tail coverage. These tail coverages should each equal α. We consider tail

coverage because the effect of ties on the coverage of one tail is more transparent

than their effect on the coverage of an interval.
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As is well known, for almost any fixed value of p, coverage probabilities

will not equal their nominal value for any of the methods of forming confidence

intervals considered in Section 3, even when there are no ties. To illustrate,

we consider Wilson’s method (without a continuity correction). From equation

(15), the upper-tail coverage for a given n and p, UCn(p) say, is given by

UCn(p) =
∫ 1

p
fB(ξ; x + 1, n− x)dξ,

where x is the largest integer for which (x/n−p){p(1−p)/n}−1/2 ≤ zα. The up-

per graph in Figure 1 plots UCn(p) against p for the case where there are twenty

trials (i.e. n = 20), no ties are possible and α = 0.025. The jagged appearance

of the plot arises because the number of successes has only 21 possible values

(there are 20 spikes in the plot), so there are only 21 possible confidence inter-

vals, each of which has a positive probability of occurring. Coverage changes

as p moves from just inside a confidence limit to just outside it. For exam-

ple, when there are six successes in 20 trials, the Wilson confidence interval for

p is (0.1455, 0.5190). When p = 0.5190 (the upper limit), the probability of

six successes is 0.0269. Hence the upper tail coverage is 0.0269 greater when

p = 0.5189 than when p = 0.5191, as the former point is within the interval

(0.1455, 0.5190) while the latter point is outside it.

Figure 1 about here

The top graph also shows that the upper-tail coverage is zero for small

values of p. This is because the upper confidence limit is 0.1611 when there are

no successes so the upper limit always exceeds p for p < 0.1611. The dashed

horizontal line in the graph marks the nominal coverage of α = 0.025. The

line shows that, with Wilson’s method, the upper-tail coverage tends to be too

small for p < 0.5 and too large for p > 0.5. The converse is true for lower

tail coverage, of course. These tend to counteract each other when calculating

the coverage of a confidence interval and the coverage of a Wilson confidence

interval is generally good, sometimes much better than would be anticipated

from the coverage in one tail.

Ties affect the coverage of intervals. In particular, when ties are present

there are more possible outcomes as an outcome now includes the number of
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ties, as well as the numbers of successes and failures. Hence, there are more

values that confidence limits can take. This means that there are more spikes

in a plot of coverage against p, but the sizes of spikes tend to be smaller. To

give an example involving ties we must specify a joint distribution for S and T .

For p ≥ 0.5 we put

Pr(S = s, T = t) = λs

(
n
t

)
θt(1− θ)n−t .

(
n− t

s

)
ps(1− p)n−t−s (20)

for s + t = 0, . . . , n, where s and t are integers, 0 ≤ θ ≤ 1, and λ0, . . . , λs are

positive constants. If λs = 1 for all s, then equation (20) would imply that the

marginal distribution of T is bin(n, θ) and the conditional distribution S |T = t

would be bin(n−t, p). (The joint distribution of S, T and the number of failures

would be multinomial.) Thus equation (20) with λs ≡ 1 seems a reasonable first-

approximation to the joint distribution of S and T and is the motivation for

defining their joint distribution by (20). We choose θ to control the distribution

of the number of ties. The λi must be chosen so that the distribution of X is

binomial when ties are broken at random. If X ∼ bin(n, p), then from equation

(1),
x∑

s=0

n−s∑

t=x−s

[1/(t + 1)]Pr(S = s, T = t) =

(
n
x

)
px(1− p)n−x (21)

for x = 0, . . . , n. This determines the λi. Setting x = 0 in equation (20) gives

λ0; after λ0, . . . , λi have been calculated (i < n), λi+1 is determined by setting

x = i + 1 in (20). In the cases we consider, the λi are always positive provided

p > 0.5. For p < 0.5 we interchange the roles of success and failure. That is, we

substitute F for S, f for s, and 1 − p for p in equations (20) and (21), where

F is the number of failures. Calculation yields Pr(F = f, T = t) and we put

Pr(S = s, T = t)Pr(F = n− s− t, T = t). This gives a symmetric relationship

between success and failure in their coverage probabilities, which is as it should

be, as the labels success and failure are often assigned arbitrarily to the possible

outcomes of a trial. We refer to this example (defined by equations (20) and

(21)) as the “sampling-with-ties example”.

To examine the coverage of a method for this example, we determined the

confidence (credible) interval that the method gives for each feasible combina-
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tion of S, T . Then the upper-tail coverage for a given value of p is

UCn(p) = Pr({s, t} ∈ Ω),

where Ω is the set of {s, t} combinations for which p is above the upper confi-

dence limit. Lower-tail coverage has an equivalent definition and the coverage

of a confidence interval is 1 − (lower-tail coverage + upper-tail coverage). The

lower graph in Figure 1 gives the upper-tail coverage for Wilson’s method when

θ, the parameter in equation (20) that controls the proportion of ties, is set

equal to 0.2p(1− p). [With this choice of θ the number of ties does not swamp

the number of successes or the number of failures.] Comparison of the two

graphs in Figure 1 illustrates that spikes are smaller but more numerous when

there are ties (lower graph) than when there are are no ties (upper graph).

Equivalent graphs for four other well-recommended methods are given in

Figure 2. Each of them again shows that there are smaller, but more numerous

spikes when there are ties (right-hand graphs) than when there are no ties (left-

hand graphs). Figures 1 and 2 also both suggest that coverage tends to be

more conservative in the presence of ties. However, there are differences in

the coverage patterns of the methods. The Agresti-Coull method has a similar

pattern to Wilson’s method (Fig. 1), with coverage tending to be lower for

p < 0.5 than for p > 0.5. The other three methods have coverages that show

almost no trend, with the mid-p and Jeffreys methods giving a similar level of

coverage while the coverage for Clopper-Perason is noticeably more conservative,

especially in the presence of ties. The Clopper-Pearson method, of course, is the

only one of the methods that guarantees to give a coverage that is not liberal.

Figure 2 about here

Table 1 gives the average coverage of ten methods as p varies from 0

to 1, including the methods shown in Figures 1 and 2. Three situations are

considered: (i) no ties, and the sampling-with-ties-example with either (ii) θ =

0.01p(1 − p) or (iii) θ = 0.02p(1 − p). With (ii), when p is small just under

10% of the controls whose underlying score is less than the case are expected

to get the same actual score as the case. With (iii) the proportion doubles

to 20%. Methods were used to construct 95% confidence intervals. Both for
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n = 20 and n = 50, the average coverage of intervals is greater for each method

when there are ties than when there are no ties, and it is greatest for the larger

proportion of ties. When there are no ties, the standard Wald method (with or

without a continuity correction) gives poor average coverage that is well below

the nominal level of 0.95, and the same is true of the Bayes credible interval

when a beta(0, 0) distribution is taken as the prior. The average coverage of

these methods improves in the presence of ties. Other methods in the table give

a reasonable average coverage when there are no ties: the Bayesian credible

interval from a uniform prior has an average coverage of exactly 0.95 while the

average of other methods are a little higher. Hence, as the probability of a tie

increases, the average coverages of these methods worsen with our procedure for

handling ties. However, the decrease in performance is not dramatic. Indeed,

even for θ = 0.2p(1−p) the average coverages of the Wilson, mid-p, Jeffreys and

Bayes(1, 1) intervals are better than the average coverage of the “gold-standard”

Clopper-Pearson method when there are no ties. In the main, Agresti-Coull

intervals also have slightly better coverage in the presence of ties than Clopper-

Pearson intervals when ties are absent.

Table 1 about here

By definition, confidence intervals are meant to be conservative rather

than liberal, with a coverage that at least equals its nominal value for every

value of p. Figures 1 and 2 show that many methods give a one-tail coverage

that is sometimes liberal and they suggest that coverage is less liberal with our

procedure when ties are present. To quantify the extent to which a method is

liberal, we define the exceedence of an interval by

exceedance =





coverage− nominal level if coverage > nominal level

0 otherwise.

The average exceedence as p varies from 0 to 1 was determined for each method

and these values are also given in Table 1. The standard Wald methods and

Bayes(0, 0) show average exceedences that are large regardless of whether or

not ties are present. This is to be expected as these methods are markedly

liberal when judged by average coverage. However, their average exceedences
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are noticeably better (i.e. smaller) when ties are present. Other methods also

show clearly better average exceedences when ties are present, except when

when there was no room for improvement because, even with no ties, average

exceedences were virtually zero.

The work reported in Table 1 was repeated, but with the nominal con-

fidence level set at 0.99 rather than 0.95. Results for n = 50 are reported in

Table 2. Patterns are similar to those found for a nominal coverage of 0.95. The

coverage of the confidence intervals increases as the proportion of ties increases.

The standard Wald methods and Bayes with a beta(0, 0) prior again give very

liberal coverage while the other methods are conservative. As with 95% nom-

inal coverage, the degrees of conservatism with the Agresti-Coull method, the

Wilson methods, and the mid-p method were not excessive when there was a

moderate proportion of ties, being similar to the level of the Clopper-Pearson

method when there are no ties. The same is true of the Bayes method with

beta(0.5, 0.5) or beta(1, 1) as the prior.

Table 2 about here

After coverage, the lengths of confidence intervals is the next most impor-

tant feature of methods to construct them. The average length of confidence

intervals was determined for each level of ties and each method. Results for

95% confidence/credible intervals are given in Table 3. The width of intervals

changed very little when ties were introduced or the proportion of ties increased.

This is the case both for 20 and 50 trials. It suggests that our method does not

usually increase the size of intervals dramatically in order to make due allowance

for the added uncertainty caused by a moderate number of ties.

We have not constructed examples in which a large proportion of ties are

present. In such cases, the assumptions that are made about the distribution

of ties will affect results. Instead, we give an example based on a real database.

For the Depression scale of the DASS-21 scale, the database of Crawford et al.

[6] has 1421 controls with a score lower than 2, 337 controls with a score of 2,

and 1171 controls with a score greater than 2. Suppose a case scores 2 and a

95% confidence interval for the proportion of people with a lower underlying

level of depression than the case is required. Many controls have a score that



21

ties with the case’s. One could treat half of them as having a lower level of

depression than the case and half as having a higher level of depression. This

gives a 95% confidence interval of (0.525, 0.561), using the mid-p method. In

contrast, if our procedure is used in conjunction with the mid-p method, then

the 95% confidence interval is (0.483, 0.602). Hence, ignoring the uncertainty

arising from ties leads to an interval that is less than one-third of its correct

width. Moreover, the actual confidence level of an interval of (0.525, 0.561) is

less than 32% (using the mid-p method in conjunction with our procedure),

rather than its nominal level of 95%. Almost identical differences are seen if the

mid-p method is replaced by other reasonable methods of forming confidence

intervals for a binomial proportion. Consequently, using a procedure such as

ours is essential in this real example if a realistic confidence interval is to be

formed.

Table 3 about here

5. Computer software

Calculating the confidence intervals that are given by our procedure would be a

laborious task without a computer, even for only a modest number of ties. Hence

a computer program has been written to accompany this paper. The program

runs on PCs and can be freely accessed from the second author’s web page at

www.abdn.ac.uk/∼psy086/dept/Binomial Ties CIs.htm It can be downloaded

(either as an uncompressed executable or as a zip file) or its executable form

may be run without saving any files. The program implements all the methods

described here for handling ties. It prompts the user to specify the number of

successes, failures and ties that were observed and asks the user to state the

confidence level that is required. The preferred method for forming confidence

intervals must also be selected. Also, there are some “user-tailored” methods

that add flexibility by allowing the user to specify parameter values. The pro-

gram outputs a point estimate of the binomial proportion and an equal-tailed

confidence interval for that proportion.

To give more detail, the methods available are the standard Wald, Agresti-

Coull and tailored Wald-form methods, Wilson’s method and the tailored score-
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form method, the Clopper-Pearson, mid-p and tailored exact-form methods, and

Bayesian credible interval using Jeffrey’s prior, a beta(0,0) or beta(1,1) prior,

or a tailored beta prior. With some methods an optional continuity correction

is offered and with the “tailored” methods the user specifies parameter values.

In particular, with the tailored Wald-form method the user is prompted to

specify the nominal sample size (ñ), the nominal number of successes (s̃) and

the continuity correction c1. The roles of (ñ) and c1 are defined in equation

(12) and p̃ = p̃/ñ defines s̃. Usually the user should set c1 equal to 0 (for no

continuity correction) or 1/(2ñ) (for the standard correction factor), but the

choice is not restricted to these values. The tailored score-form method allows

the user to specify the value of c2 in equation (15) and the tailored exact-form

method allows the user to specify the value of c3 in equations (18) and (19).

For Bayesian credible intervals, the form of the prior distribution is taken as a

beta distribution and the user specify its two parameters.

6. Concluding comments

The work in this paper shows that the proposed procedure is a viable means

of extending methods of forming confidence intervals for binomial proportions

so that the methods can handle ties. A variety of methods were considered in

Section 3 and this showed that the procedure is widely applicable and gener-

ally straightforward to use. Formula for applying the procedure to the common

methods of forming equal-tailed confidence intervals were given. Results pre-

sented in Table 3 suggest that the width of confidence intervals will not increase

greatly with our procedure when the proportion of ties is modest. However,

the width must increase substantially if due allowance is to be made for a large

proportion of ties.

As the binomial proportion increases from 0 to 1, the coverage of a method

of forming confidence intervals repeatedly rises and falls. The changes are quite

substantial when there are no ties. When ties are present, coverage is much

more stable if our procedure is used – ties multiply the number of rises and

falls but the drops from a peak to a trough are much smaller. This is illustrated

very clearly in the figures in Section 4. These figures also suggest that a method
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which is sometimes quite liberal in the absence of ties will lead to a procedure

that is appreciably less liberal when ties are present: in the figures, coverage

crosses the nominal confidence level much less frequently when there are ties

and, when the coverage does exceed its nominal level, it exceeds it by less.

In any numeric example, assumptions must be made about the distribution

of the number of ties and only one form of distribution was considered in our

examples. However, implications from the examples seem likely to generalise. In

particular, the theoretical results given in Section 2 suggest that our procedure

will generally be less liberal/more conservative than the method that it extends.

This has relevance to the choice of method for forming a confidence interval for a

proportion. In the absence of ties, the Clopper-Pearson method is often referred

to as the gold-standard method because its coverage is always conservative

and never liberal. Other less conservative methods have been proposed that

aim to give a better average coverage without being too liberal too often. In

the presence of ties our procedure tends to make methods more conservative

and reduce any tendency to be liberal. This increases the disadvantage of the

Clopper-Pearson method while making several other methods (such as the mid-

p, Jeffreys and Wilson methods) more attractive.

A computer program that implements the procedure proposed in this paper

has been described in Section 5. The program is free and makes the procedure

easy to use. A more targeted implementation of the procedure has also been

produced that is useful to neuropsychologists and other medical workers [6].

That implementation has a database that contains scores for large samples of

controls on five common mood scales, such as the Depression and Anxiety Stress

Scales (DASS). The score of a case can be entered for one of the mood scales

and, using the database, the computer program will estimate the proportion of

controls with a smaller underlying value on that scale – typically there will be

some controls whose scores tie with that of the case and it is assumed that these

scores should be broken at random. A confidence interval for the proportion is

determined using the procedure proposed in this paper. This application area

is just one of many in medical, psychological and educational testing where

normative data contain a large number of multiple ties, so we believe that the
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methods developed in this paper have wide applicability.
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Appendix

Proof of Proposition 1

Given t, by assumption
∑s+t

x=s γ(x, p)/(t + 1) > α for s = s∗(t) + 1, . . . , n − t.

Hence, if u < p, then
∑s+t

x=s γ(x, u)/(t + 1) > α for s = s∗(t) + 1, . . . , n − t.

Equation (2) gives
∑s+t

x=s γ(x, u∗)/(t + 1) = α so, if u∗ < p, then s must be

smaller than s∗(t + 1). Consequently,

P (U∗ < p | t) ≤ P (S ≤ s∗(t) | t). (A.1)

Now, X ≤ s∗(t) implies S ≤ s∗(t), so P [{S ≤ s∗(t)} ⋂ {X ≤ s∗(t)} | t] =

P [X ≤ s∗(t) | t]. Also, P [{S ≤ s∗(t)} ⋂ {X > s∗(t)} | t] =
∑t

j=1 P [S = s∗(t)−t+

j | t].P [X > s∗(t) |S = s∗(t)−t+j, t] =
∑t

j=1 P [S = s∗(t)−t+j | t].(j/(t+1)) =
∑t

i=1

∑i
j=1 P [S = s∗(t)− i + j | t] /(t + 1). Hence,

P [S ≤ s∗(t) | t] = P [X ≤ s∗(t) | t]+
t∑

i=1

i∑

j=1

P [S = s∗(t)− i+ j | t] /(t+1). (A.2)

By assumption P (S = s | t) ≥ P (S = s − 1 | t) for s ≤ s∗(t) + t, so
∑i

j=1 P [S = s∗(t)− i + j | t] ≤ ∑t+1
j=1 P [S = s∗(t)− i + j | t] (i/(t + 1)) = iP [X =

s∗(t)− i + t + 1 | t]. Substituting in (A.2),

P [S ≤ s∗(t) | t] ≤ P [X ≤ s∗(t) | t] +
t∑

i=1

iP [X = s∗(t)− i + t + 1 | t](1/(t + 1))

=
s∗(t)+t∑

x=s∗(t)
P (X ≤ x | t)/(t + 1).
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Hence, from (A.1), P (U∗ < p | t) ≤ ∑s∗(t)+t
x=s∗(t) P (X ≤ x | t)/(t + 1), so from

equations (5) and (8)

P (U∗ ≤ p | t) ≤
s∗(t)+t∑

x=s∗(t)
{γ(x, p)− ψ(x, p)− h(x, t)}/(t + 1)

≤ α−
s∗(t)+t∑

x=s∗(t)
{ψ(x, p) + h(x, t)}/(t + 1).

As P (U∗ ≥ p) = 1−P (U∗ < p) = 1 − ∑n
t=0 P (T = t).P (U∗ ≤ p | t), Proposition

1 follows.

Proof of Propositions 2 and 3

Suppose that ψ(x, p) ≥ λ1 − λ2γ(x, p) for all x and p, with λ2 ≥ 0. Then
∑n

t=0

∑s∗(t)+t
x=s∗(t) P (T = t).ψ(x, p)/(t + 1) ≥ λ1

∑n
t=0 P (T = t) − λ2

∑n
t=0{P (T =

t)
∑s∗(t)+t

x=s∗(t) γ(x, p)/(t + 1)} ≥ λ1 − λ2α, from equation (6). Hence, if (11) holds,

P (U∗ ≥ p) ≥ (1− α) + λ1 − λ2α. (A.3)

This proves Proposition 3. When the assumptions underlying Proposition 2

apply, then ψ(x, p) ≥ 0 for all x and p, so we may put λ1 = λ2 = 0. Then (A.3)

gives P (U∗ ≥ p) ≥ 1− α, which is the result given in Proposition 2.
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Figure 1. Upper-tail coverage for Wilson’s method when there are no ties (upper

graph) and for the sampling-with-ties example (lower graph).
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Figure 2. Upper-tail coverage for the Agresti-Coull, Clopper-Pearson, Mid-p

and Jeffreys methods when there are no ties (left-hand graphs) and for the

sampling-with-ties example (right-hand graphs).
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Table 1. Average interval coverage and average exceedance of coverage for

95% confidence intervals formed by various methods: results for twenty and

fifty trials, both when ties are absent (θ = 0) and when ties are present (θ > 0).

Method No ties (θ = 0) θ = 0.1p(1− p) θ = 0.2p(1− p)

Aver. Aver. Aver. Aver. Aver. Aver.
cover. exceed. cover. exceed. cover. exceed.

n = 20

Standard Wald 0.846 0.1042 0.856 0.0942 0.866 0.0843
Standard (cc)1 0.870 0.0844 0.878 0.0775 0.886 0.0728
Agresti-Coull 0.961 0.0015 0.965 0.0001 0.970 0.0000
Wilson 0.953 0.0054 0.958 0.0019 0.963 0.0010
Wilson (cc)1 0.976 0.0000 0.979 0.0000 0.982 0.0000

Clopper-Pearson 0.977 0.0000 0.980 0.0000 0.983 0.0000
Mid-p 0.961 0.0027 0.966 0.0003 0.970 0.0000
Bayes(0, 0)2 0.859 0.0931 0.868 0.0830 0.878 0.0759
Jeffreys(0.5, 0.5)2 0.951 0.0076 0.956 0.0031 0.962 0.0014
Bayes(1, 1)2 0.950 0.0083 0.955 0.0053 0.960 0.0044

n = 50

Standard Wald 0.901 0.0497 0.910 0.0405 0.920 0.0345
Standard (cc)1 0.919 0.0358 0.927 0.0320 0.935 0.0299
Agresti-Coull 0.958 0.0013 0.963 0.0000 0.970 0.0000
Wilson 0.952 0.0034 0.958 0.0006 0.965 0.0004
Wilson (cc)1 0.969 0.0000 0.974 0.0000 0.979 0.0000

Clopper-Pearson 0.969 0.0000 0.974 0.0000 0.979 0.0000
Mid-p 0.955 0.0023 0.961 0.0002 0.968 0.0000
Bayes(0, 0)2 0.910 0.0414 0.919 0.0339 0.928 0.0308
Jeffreys(0.5, 0.5)2 0.950 0.0049 0.957 0.0011 0.964 0.0005
Bayes(1, 1)2 0.950 0.0048 0.956 0.0021 0.964 0.0018

1 Standard Wald/Wilson method with a continuity correction.
2 Bayesian credible interval where the numbers in brackets are the parameters
of the beta prior.
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Table 2. Average interval coverage and average exceedance of coverage for

99% confidence intervals formed by various methods: results for fifty trials,

both when ties are absent (θ = 0) and when ties are present (θ > 0).

Method No ties (θ = 0) θ = 0.1p(1− p) θ = 0.2p(1− p)

Aver. Aver. Aver. Aver. Aver. Aver.
cover. exceed. cover. exceed. cover. exceed.

Standard Wald 0.940 0.0500 0.946 0.0443 0.951 0.0396
Standard (cc)1 0.946 0.0429 0.952 0.0390 0.956 0.0362
Agresti-Coull 0.992 0.0002 0.993 0.0000 0.995 0.0000
Wilson 0.989 0.0017 0.991 0.0008 0.993 0.0006
Wilson (cc)1 0.994 0.0001 0.995 0.0001 0.996 0.0000

Clopper-Pearson 0.994 0.0000 0.996 0.0000 0.997 0.0000
Mid-p 0.992 0.0004 0.993 0.0000 0.995 0.0000
Bayes(0, 0)2 0.950 0.0399 0.954 0.0364 0.958 0.0345
Jeffreys(0.5, 0.5)2 0.990 0.0011 0.992 0.0002 0.994 0.0001
Bayes(1, 1)2 0.990 0.0012 0.992 0.0006 0.994 0.0005

1 Standard Wald/Wilson method with a continuity correction.
2 Bayesian credible interval where the numbers in brackets are the parameters
of the beta prior.
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Table 3. Average length of 95% confidence intervals formed by various meth-

ods: results for twenty and fifty trials, both when ties are absent (θ = 0) and

when ties are present (θ > 0).

Method n = 20 n = 50

θ = 0 θ = θ1
0.1 θ = θ1

0.2 θ = 0 θ = θ1
0.1 θ = θ1

0.2

Standard Wald 0.316 0.321 0.327 0.211 0.215 0.220
Standard (cc)2 0.354 0.359 0.365 0.229 0.233 0.237
Agresti-Coull 0.337 0.341 0.345 0.218 0.221 0.225
Wilson 0.325 0.330 0.334 0.213 0.216 0.221
Wilson (cc)2 0.366 0.370 0.375 0.231 0.235 0.239

Clopper-Pearson 0.366 0.370 0.375 0.231 0.234 0.238
Mid-p 0.335 0.339 0.343 0.215 0.219 0.223
Bayes(0, 0)3 0.310 0.322 0.334 0.209 0.216 0.223
Jeffreys(0.5, 0.5)3 0.323 0.327 0.332 0.212 0.215 0.219
Bayes(1, 1)3 0.327 0.331 0.335 0.213 0.216 0.221

1 θ0.1 = 0.1p(1− p); θ0.2 = 0.2p(1− p).
2 Standard Wald/Wilson method with a continuity correction.
3 Bayesian credible interval where the numbers in brackets are the parameters
of the beta prior.


