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SUMMARY

In canonical analysis with more variables than samples, it is shown that, as well as
the usual canonical means in the range-space of the within-groups dispersion matrix,
canonical means may be defined in its null space. In the range space we have the usual
Mahalanobis metric; in the null space explicit expressions are given and interpreted for
a new metric.

Keywords: Between-group distances, Canonical analysis, Mahalanobis distance

1. INTRODUCTION

In Canonical Variate Analysis measurements on each of p variables for n samples are
distributed among k groups of sizes nj +no + ...+ ng = n. These measurements are
available in an n X p matrix X, assumed column-centered, and therefore of rank at most
min(n — 1,p), with group-membership given in an n x k indicator matrix G. Here, g;; = 1
when the ith sample belongs to the jth group but otherwise G is zero. Thus G1 =1

and 1'G = 1'N, where N = diag(ny,na,...,ng) = G'G; we also write ,, H,, = nGka_lG’n.
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With this notation, the usual between and within-group orthogonal decomposition:
nXp = nGLN'GL Xy + [T — G N Glln Xy = HX + (I — H)X
has an associated analysis of variance
PX7/1XP = pX;anXp + pX;z(I - H)nXp

expressing that the Total sum-of-squares (T') is the sum of the Between-Group sum-of-
squares (B) and the Within-Group sum-of-squares (W). Note that the n rows of HX
repeat the k different means ni,ns, ..., n; times; to get each mean only once, we require
N~'GX which we write as X.

In classical canonical variate analysis, the spectral decomposition W = UX2U’ un-
derpins the transformation to canonical variables XL where L = UX~!. These define
canonical means HX L with inner-products (HXL)(HXL) = HXW~'X'H that use
the metric LL' = W~ to generate Mahalanobis distances between the canonical means;
note that L'W L = I. The rank of the canonical means is k — 1 (or less) but they may be
approximated in a smaller space, by using a conventional principal components analysis.
These two steps (i) define a metric, followed by (ii) a principal components analysis, are
usually subsumed into a single two-sided eigenvalue calculation but the two-step process
is better for understanding the following.

The above requires that W has full rank p. The case when p > n is increasingly im-
portant where much of the interest is in overcoming computational difficulties, perhaps
reducing the number of variables by identifying and rejecting those deemed irrelevant
or by focussing on some form of functional multivariate analysis (see e.g. Krzanowski,
1995; Mertens, 1998). Here, we explore a novel structural property of canonical analysis

that occurs when p > n. When p > n then rank(W) =n — k and rank(7") =n — 1 and
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W does not have an ordinary inverse so the Mahalanobis metric is undefined. This need

not be a major problem, because we may express the spectral decomposition

»? Uy
W = (U, Uy)
0 U}
where U; are the eigenvectors in the range space of W and Up those in its null space.
Then, we may define canonical means HX L where now L = U; X! in the range space.
No longer is L'W L = I but rather L'WL = I,,_y. Then (L'WL)(L'WL) =1,_, = L'WL.

We may write this:

L L
WLL'W (L,Uy) = W (L, Uy)
Us Us
which, because (L,Up) is non-singular, gives W(LL)W = W showing that the metric
is now a generalised inverse, rather than an inverse, of W. With this minor change, we
may proceed as before with a principal components analysis. An interesting thing is that

canonical means may also be defined in the null space. This follows from noting that the

null vectors satisfy:
X'(I - H)XUy=0
and so
XUy = HXUj. (1)

Note that the k different means are repeated ni,no,...,n; times in the n rows of both
XUy and, equivalently, HXUp. Being null vectors of W, the canonical variables XUy
have zero variability within groups, but the corresponding canonical means H XUy have
non-zero sums-of-squares. Evidently, the computation of H XUy is straightforward, as is

any subsequent principal components analysis; an example is given by Gower & Albers
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4

(‘Canonical Analysis: Ranks, Ratios and Fits’, in preparation). For a fuller understanding
it is interesting to ask what functional form, analogous to Mahalanobis distance in the
range space, is taken by the distance d;; between the i¢th and jth canonical means in the
null space of W. This is our main objective below but first we have to address a minor
but troublesome technical matter.

The total dispersion T'= X’X has rank n — 1 so implying an extensive null space
of rank p — n + 1; this null space is also common to the null spaces of B and W. This
common null space is uninteresting; we are concerned only with the additional null spaces
of W and B that are in the range space of T', especially the intersection of the range space
of T and the null space of W which normally has dimension/rank k£ — 1. To simplify the
following development we assume that the common null space has been eliminated by
taking the spectral decomposition T'= VAV’ and redefining X as XV. Throughout the
following, we assume that X has been so redefined.

This initialisation to give X with n — 1 columns, eliminates the common null space
from the dispersion matrices T, B and W. However, it does not remove null items from
X itself. Indeed the vector 1, which eliminates the general mean, is one such null vector
and is what gives rise to the rather extensive algebraic manipulations required in the
following. Linear combinations among the rows of X will generate additional null vectors
in the common null space. The position is complicated, because such linear combinations
may be of two, not mutually exclusive, kinds (i) linear combinations within groups and
(ii) linear combinations among the group means. Loss of rank within groups merely
reduces the number of columns of the redefined X but to handle all variants that include

(ii) is not trivial and would greatly extend this short paper. Therefore, apart from some
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5

passing concluding remarks, throughout the following, we assume that rankX =k — 1

and that rankX <n — 1.

2. DERIVATION OF d;

From here on we shall be working in the null space of W so we drop the suffix from

Up. Starting from XU = HXU for the null-vectors of W, as in (1), we have that

wXn1Up_1 = G(G'G) "G’ XU

= nGrAr—1

where 1 A;_1 = XU are the k group-mean coordinates given in repeated form in XU.
Thus, the calculation A = (G'G)~'G'XU is an expression whose rows give coordi-
nates that generate the distance d;; between each pair of group-mean coordinates. We
need an explicit expression for dgj . We do not require A itself, which has the usual
rotational indeterminacy, but only AA’. Then, d?j = (AA); + (AA")j; — 2(AA");;. Be-
cause X is centred, 1’X = 0 and so ’XU = 1’"GA=1NA = 0. Also, U'U = I;,_;. From
(1) U'U = ((X'X)"'X'GA)(X'X)'X'GA) = A’PA where P = G'X(A"?)X'G with
X'X =A. We have I’P = 1"G’X(A")X'G =1X(A"2)X'G =0. So we have to solve
A'PA =1 for AA’. The difficulty is that both A and P are singular (with rank k& — 1).

Hence, consider

A'N
(Q+ A1) (NA,LN1) (2)
L1'N
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6

where Q = N"'PN~! = XA~2X’. The introduction of A may seem arbitrary but we

10
shall show that it has no substantive effect. On expansion, (2) becomes giving:
0A
-1
A'N I
Q+ M1 = (NA, LN1)~!
1
El’N A
and
1 . I A'N
(Q+ A1) = (NA,1N1) 1 1
/
Thus,
_ AA"+ 11
N1 M) PN = 2 T 3
(Q + ) )\nQ ( )

From 3 we may calculate d,%j. The constant term 11’ /An? has no effect on derived distances
and we shall show that (Q + A11’)~! also is invariant to non-zero choices of A. Thus (3)
contains everything needed for finding AA’ but the evaluation of (Q + A11’)~! needs
some care, because @ is singular and the equivalent of (A4) is unavailable.

For simplicity, we derive d?,, the other values of d?j following by symmetry. Notation

is established via

cileat| ¢ C=Q+ M1
C12(C22 I Cia = Q2 + M11/
C = where ¢ =q + A1
crlca| Ci2 c2 = q2 + Al
(c11,c12, c22) = (q11, q12, g22) + A

From (3)
/ / /
1 C22 Cy 1 C11 2 C12 Cy
Adfy = —5 det + — det + det , (4)
n n ning
! ca Cr2 2 c1 Cr2 c1 Cr2
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7

where A = det C, and the determinants are the cofactors of c¢11, co2 and c12. Using (A1),
(4) becomes

1 -1 1 1
Ad2, = det C { — O} = —dCot
12 et C12 n% <622 SIS 62) + n% (011 1019 01) + -

-1
(012 - 0’1013102) :| 5
which simplifies to

-1
n%n%Ad%Q = det Cy» {n%cu + n%cm + 2n1naci2 — (nier + nace)'Cr (nier + TLQCQ)] .

()

Using (A1) and (A2) we have

(n101 + TLQCQ),Cﬁl (n101 + n202) = (Clng — )\nl)/Cﬁl(Clng — )\nl)

= 1"MC1aM1 — 2201’ M1+ X?n?1'CH1. (6)

Bringing everything together using (6), (A4) and (A5), and expanding in terms of ¢;;,

(5) becomes

nin3Adi, = (14 M'Q121) det Q1o [H%QM + n3qaa + 2n1n2qia + A(ng + ng)?

L AQ1Y QY
—1UMQaM1 — N1M1)% + 22n1' M1 — \?n? 1 A%t g
Q12 ( ) n n? | Qn AT

which, on using (A1), simplifies to

M21'Qr 1

1+ MO0
1+ \'Qp, 1 ( @2 1)

nin3Ad2, = det Qqo [)\(nl +n9)% 4+ An —ny —ng)(n +ny +ng) —

= det Quz [Mn? (1+A1Q1) = Mn?1Q5' 1]
= An?det Q2. (7)
This simple result shows that d%j is proportional to det ;.

To show that dgj is independent of A requires an analysis of A = det(Q + A11’). Let

R=Q+11.Then I = R~'Q + R~'11’ and so

VIN1 =1 (R—lQ + R—111’) N1
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UN1 = (1R™'1) (I'N1)

'R 11 =1.
Then

A = det(R+ (A —1)11)
=det R (1+ (A= )I'R™1)
= AdetR

= Adet(Q + 11).

That R # 0 is guaranteed by our assumption that X = k — 1 made at the end of Section
1.
Thus, finally, (7) becomes

1 n?

di, =
127 det(Q + 11") n2n

% det ng (8)

showing that d%j depends only on the group sizes and det Q2. Recall that Q = XA~ X’

and that ()12 is obtained from () by striking out its first two rows and columns.

3. ALTERNATIVE EXPRESSIONS

The expression for A has manu forms. Of special interest is that derived from writing

/
C11 C12| ¢4

— /
A = det C12 C22| Co

c1 c2|Ch2

Multiplying the first row by 71 and then adding ¢; (i = 2,..., k) times the other rows,

replaces the first row by nAl. This shows that A may be subtracted from rows 2,...,k
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to give

Q1 g2 |Q12

whence similar operations on the columns give

1 v

n?A = \ndet | o G2 @b

0lq2 Q12

= An? (Q22 - qlelefh) det Q12. 9)

Similar expressions may be derived by annihilating the second row/column and the first

row and second column to give

n3A = An? (Q11 - QQQﬁlCJl) det Q12

niA = An? (Qm - QQQfQIQQ) det Q12 ( - (10)

—nineA = An? (CJ12 - Qin_2IQ2) det Q12

Combining, gives the symmetric form

(n1 4+ n2)*A = An? [(QH + 22 — 2q12) — (1 — ¢2)' Q12 (@1 — (J2)} det Q12

which, on substitution into (8) gives

2
= Pt [0 - m) A0 - ) — (0 - @) Qi — )] - (D)

Other substitutions for A given by (10) give alternative, less symmetric, expressions for

2
dl]’
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4. INTERPRETATION

From (11), for k£ = 2 we immediately have

(i‘l — 3732),1\72 (.f'l — i‘g) . (12)

We next examine the part of expression (11) that is enclosed in square brackets. We have

_ (1 — q2) = (21 — T2) A2 X1}
X=| 7z and .
Qu2 = X12A X7,

XlZ
Hence,
d;2 = ﬂ [(i’l — :fz),A_Q(i‘l —T9) — (1 — 532)'A_1RA—1(3_31 — i’g)}
27 (n1+ng)?

where R = A1 X12(X12A"2X12) "' X12A~! represents projection in the metric A onto the
space spanned by the k — 2 rows of X12A. Thus

2 2
-2 _ nins

A2 = it [(g:«l — Z)Y AV (I = R)A (7 — 5;2)] . (13)
Thus, expressions (6), (11) and (13) are our main results.

The interpretation of (13), visualised in Figure 1, is that d1_21 is a measure of how far
the space of Z1,Zo is from the space spanned by Zs, ..., Z;. These results are expressed
in terms of the A-metric but this is a function of the initial rescaling and vanishes on
transforming back to the scales of the original variables.

If Z; and Z9 lie in R then (13) gives a null projection onto I — R but this case is
excluded by our assumption that rankX = k — 1. An indication of the corresponding
results when rankX < k — 1 is given by the collinearity case k = 3 and rankX = 1. Then,
without giving the detailed derivation, it can be shown that d?, is proportional to (Z1 —

T29)'A=2(Z1 — Z2). That the projection term vanishes is consistent and plausible but we

do not know whether it generalises to other reduced rank cases.
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Fig. 1. R is the space spanned by the means
491 Z3,...,%k. The inverse of the distance between
499 groups 1 and 2 in the intersection space is given by

the illustrated projection onto the space orthogonal

493
to R.

494
495 5. DBASIC FORMULAE
496 This appendix contains some basic results for convenience of reference. Most are well-known
497 and, apart from (A1) and (A2), no derivations are supplied.
498 Using 1’NQ = 0 shows that
499

n1qi1 +n2qre + 1'Mgy =0
500

n1qi2 + Nagos + 1'Mgy = 0
501

n1qr +nage + Q12M1 =0
502
503 where N = diag(ny,ne, M). It follows that
504

n%‘]n + n%‘hz + 2n1naq12 = —1"M(n1q1 4 nagz) = 1'M Q12 M1. (A1)

505
506
507
508

509
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12
Similarly,
nicy +nacey = niqr + na2ge + A(ng +ng)l
= 7@12M1 —+ )\(nl + 712)].

= —C19M1+ Anl.

Furthermore, we need

aa

det = (a—d'A7"a) det 4,
a A

det Ci9 = det(QIQ + )\11/) = det Q12 (1 + )\1le211) R

and

Q1 11'Q

O = + A1) = Qi — :
12 = (@2 ) Q1o T+ AQ 1
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