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Summary

In canonical analysis with more variables than samples, it is shown that, as well as

the usual canonical means in the range-space of the within-groups dispersion matrix,

canonical means may be defined in its null space. In the range space we have the usual

Mahalanobis metric; in the null space explicit expressions are given and interpreted for

a new metric.

Keywords: Between-group distances, Canonical analysis, Mahalanobis distance

1. Introduction

In Canonical Variate Analysis measurements on each of p variables for n samples are

distributed among k groups of sizes n1 + n2 + . . .+ nk = n. These measurements are

available in an n× p matrix X, assumed column-centered, and therefore of rank at most

min(n− 1, p), with group-membership given in an n× k indicator matrix G. Here, gij = 1

when the ith sample belongs to the jth group but otherwise G is zero. Thus G1 = 1

and 1′G = 1′N , where N = diag(n1, n2, . . . , nk) = G′G; we also write nHn = nGkN
−1
k G′n.
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2

With this notation, the usual between and within-group orthogonal decomposition:

nXp = nGkN
−1
k G′nXp + [I − nGkN

−1
k G′n]nXp = HX + (I −H)X

has an associated analysis of variance

pX
′
nXp = pX

′
nHnXp + pX

′
n(I −H)nXp

expressing that the Total sum-of-squares (T ) is the sum of the Between-Group sum-of-

squares (B) and the Within-Group sum-of-squares (W ). Note that the n rows of HX

repeat the k different means n1, n2, . . . , nk times; to get each mean only once, we require

N−1GX which we write as X̄.

In classical canonical variate analysis, the spectral decomposition W = UΣ2U ′ un-

derpins the transformation to canonical variables XL where L = UΣ−1. These define

canonical means HXL with inner-products (HXL)(HXL)′ = HXW−1X ′H that use

the metric LL′ = W−1 to generate Mahalanobis distances between the canonical means;

note that L′WL = I. The rank of the canonical means is k − 1 (or less) but they may be

approximated in a smaller space, by using a conventional principal components analysis.

These two steps (i) define a metric, followed by (ii) a principal components analysis, are

usually subsumed into a single two-sided eigenvalue calculation but the two-step process

is better for understanding the following.

The above requires that W has full rank p. The case when p > n is increasingly im-

portant where much of the interest is in overcoming computational difficulties, perhaps

reducing the number of variables by identifying and rejecting those deemed irrelevant

or by focussing on some form of functional multivariate analysis (see e.g. Krzanowski,

1995; Mertens, 1998). Here, we explore a novel structural property of canonical analysis

that occurs when p > n. When p > n then rank(W ) = n− k and rank(T ) = n− 1 and



97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

3

W does not have an ordinary inverse so the Mahalanobis metric is undefined. This need

not be a major problem, because we may express the spectral decomposition

W = (U1, U0)

Σ2

0


U ′1
U ′0


where U1 are the eigenvectors in the range space of W and U0 those in its null space.

Then, we may define canonical means HXL where now L = U1Σ−1 in the range space.

No longer is L′WL = I but rather L′WL = In−k. Then (L′WL)(L′WL) = In−k = L′WL.

We may write this:  L′

U ′0

WLL′W (L,U0) =

 L′

U ′0

W (L,U0)

which, because (L,U0) is non-singular, gives W (LL′)W = W showing that the metric

is now a generalised inverse, rather than an inverse, of W . With this minor change, we

may proceed as before with a principal components analysis. An interesting thing is that

canonical means may also be defined in the null space. This follows from noting that the

null vectors satisfy:

X ′(I −H)XU0 = 0

and so

XU0 = HXU0. (1)

Note that the k different means are repeated n1, n2, . . . , nk times in the n rows of both

XU0 and, equivalently, HXU0. Being null vectors of W , the canonical variables XU0

have zero variability within groups, but the corresponding canonical means HXU0 have

non-zero sums-of-squares. Evidently, the computation of HXU0 is straightforward, as is

any subsequent principal components analysis; an example is given by Gower & Albers
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4

(‘Canonical Analysis: Ranks, Ratios and Fits’, in preparation). For a fuller understanding

it is interesting to ask what functional form, analogous to Mahalanobis distance in the

range space, is taken by the distance dij between the ith and jth canonical means in the

null space of W . This is our main objective below but first we have to address a minor

but troublesome technical matter.

The total dispersion T = X ′X has rank n− 1 so implying an extensive null space

of rank p− n+ 1; this null space is also common to the null spaces of B and W . This

common null space is uninteresting; we are concerned only with the additional null spaces

of W and B that are in the range space of T , especially the intersection of the range space

of T and the null space of W which normally has dimension/rank k − 1. To simplify the

following development we assume that the common null space has been eliminated by

taking the spectral decomposition T = V ΛV ′ and redefining X as XV . Throughout the

following, we assume that X has been so redefined.

This initialisation to give X with n− 1 columns, eliminates the common null space

from the dispersion matrices T , B and W . However, it does not remove null items from

X itself. Indeed the vector 1, which eliminates the general mean, is one such null vector

and is what gives rise to the rather extensive algebraic manipulations required in the

following. Linear combinations among the rows of X will generate additional null vectors

in the common null space. The position is complicated, because such linear combinations

may be of two, not mutually exclusive, kinds (i) linear combinations within groups and

(ii) linear combinations among the group means. Loss of rank within groups merely

reduces the number of columns of the redefined X but to handle all variants that include

(ii) is not trivial and would greatly extend this short paper. Therefore, apart from some
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5

passing concluding remarks, throughout the following, we assume that rankX̄ = k − 1

and that rankX ≤ n− 1.

2. Derivation of d2
ij

From here on we shall be working in the null space of W so we drop the suffix from

U0. Starting from XU = HXU for the null-vectors of W , as in (1), we have that

nXn−1Uk−1 = G(G′G)−1G′XU

= nGkAk−1

where kAk−1 = X̄U are the k group-mean coordinates given in repeated form in XU .

Thus, the calculation A = (G′G)−1G′XU is an expression whose rows give coordi-

nates that generate the distance dij between each pair of group-mean coordinates. We

need an explicit expression for d2
ij . We do not require A itself, which has the usual

rotational indeterminacy, but only AA′. Then, d2
ij = (AA′)ii + (AA′)jj − 2(AA′)ij . Be-

cause X is centred, 1′X = 0 and so 1′XU = 1′GA = 1′NA = 0. Also, U ′U = Ik−1. From

(1) U ′U = ((X ′X)−1X ′GA)′((X ′X)−1X ′GA) = A′PA where P = G′X(Λ−2)X ′G with

X ′X = Λ. We have 1′P = 1′G′X(Λ−2)X ′G = 1′X(Λ−2)X ′G = 0. So we have to solve

A′PA = I for AA′. The difficulty is that both A and P are singular (with rank k − 1).

Hence, consider

 A′N

1
n1′N

 (Q+ λ11′)(NA, 1
nN1) (2)
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where Q = N−1PN−1 = X̄Λ−2X̄ ′. The introduction of λ may seem arbitrary but we

shall show that it has no substantive effect. On expansion, (2) becomes

 I 0

0 λ

 giving:

Q+ λ11′ =

 A′N

1
n1′N


−1 I

λ

 (NA, 1
nN1)−1

and

(
Q+ λ11′

)−1 = (NA, 1
nN1)

 I
1
λ


 A′N

1
n1′N

 .
Thus,

N−1 (Q+ λ11′
)−1

N−1 =
AA′ + 11′

λn2
. (3)

From 3 we may calculate d2
ij . The constant term 11′/λn2 has no effect on derived distances

and we shall show that (Q+ λ11′)−1 also is invariant to non-zero choices of λ. Thus (3)

contains everything needed for finding AA′ but the evaluation of (Q+ λ11′)−1 needs

some care, because Q is singular and the equivalent of (A4) is unavailable.

For simplicity, we derive d2
12, the other values of d2

ij following by symmetry. Notation

is established via

C =



c11 c21 c′1

c12 c22 c′2

c1 c2 C12


where



C = Q+ λ11′

C12 = Q12 + λ11′

c1 = q1 + λ1

c2 = q2 + λ1

(c11, c12, c22) = (q11, q12, q22) + λ

From (3)

∆d2
12 =

1
n2

1

det

 c22 c′2

c2 C12

+
1
n2

2

det

 c11 c′1

c1 C12

+
2

n1n2
det

 c12 c′2

c1 C12

 , (4)
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where ∆ = detC, and the determinants are the cofactors of c11, c22 and c12. Using (A1),

(4) becomes

∆d2
12 = detC12

[
1
n2

1

(
c22 − c′2C−1

12 c2
)−1

+
1
n2

2

(
c11 − c′1C−1

12 c1
)−1

+
2

n1n2

(
c12 − c′1C−1

12 c2
)−1

]
,

which simplifies to

n2
1n

2
2∆d2

12 = detC12

[
n2

1c11 + n2
2c22 + 2n1n2c12 − (n1c1 + n2c2)′C−1

12 (n1c1 + n2c2)
]
.

(5)

Using (A1) and (A2) we have

(n1c1 + n2c2)′C−1
12 (n1c1 + n2c2) = (C12M1− λn1)′C−1

12 (C12M1− λn1)

= 1′MC12M1− 2λn1′M1 + λ2n21′C−1
12 1. (6)

Bringing everything together using (6), (A4) and (A5), and expanding in terms of qij ,

(5) becomes

n2
1n

2
2∆d2

12 = (1 + λ1′Q121) detQ12

[
n2

1q11 + n2
2q22 + 2n1n2q12 + λ(n1 + n2)2

−1′MQ12M1− λ(1′M1)2 + 2λn1′M1− λ2n2

(
Q−1

12 −
λQ−1

12 11′Q−1
12

1 + λ1′Q−1
12 1

)]

which, on using (A1), simplifies to

n2
1n

2
2∆d2

12 = detQ12

[
λ(n1 + n2)2 + λ(n− n1 − n2)(n+ n1 + n2)− λn21′Q−1

12 1
1 + λ1′Q−1

12 1

]
(1 + λ1′Q−1

12 1)

= detQ12

[
λn2

(
1 + λ1′Q−1

12 1
)
− λ2n21′Q−1

12 1
]

= λn2 detQ12. (7)

This simple result shows that d2
ij is proportional to detQij .

To show that d2
ij is independent of λ requires an analysis of ∆ = det(Q+ λ11′). Let

R = Q+ 11′. Then I = R−1Q+R−111′ and so

1′IN1 = 1′
(
R−1Q+R−111′

)
N1
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1′N1 =
(
1′R−11

)
(1′N1)

1′R−11 = 1.

Then

∆ = det(R+ (λ− 1)11′)

= detR
(
1 + (λ− 1)1′R−11

)
= λdetR

= λdet(Q+ 11′).

That R 6= 0 is guaranteed by our assumption that X̄ = k − 1 made at the end of Section

1.

Thus, finally, (7) becomes

d2
12 =

1
det(Q+ 11′)

n2

n2
1n

2
2

detQ12 (8)

showing that d2
ij depends only on the group sizes and detQ12. Recall that Q = X̄Λ−1X̄ ′

and that Q12 is obtained from Q by striking out its first two rows and columns.

3. Alternative expressions

The expression for ∆ has manu forms. Of special interest is that derived from writing

∆ = det


c11 c12 c′1

c12 c22 c′2

c1 c2 C12


.

Multiplying the first row by n1 and then adding qi (i = 2, . . . , k) times the other rows,

replaces the first row by nλ1. This shows that λ may be subtracted from rows 2, . . . , k
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9

to give

n1∆ = λn det


1 1 1′

q12 q22 q′2

q1 q2 Q12


whence similar operations on the columns give

n2
1∆ = λn2 det


1 1 1′

0 q22 q′2

0 q2 Q12


= λn2

(
q22 − q′2Q−1

12 q2
)

detQ12. (9)

Similar expressions may be derived by annihilating the second row/column and the first

row and second column to give

n2
2∆ = λn2

(
q11 − q′1Q−1

12 q1
)

detQ12

n2
1∆ = λn2

(
q22 − q′2Q−1

12 q2
)

detQ12

−n1n2∆ = λn2
(
q12 − q′1Q−1

12 q2
)

detQ12


. (10)

Combining, gives the symmetric form

(n1 + n2)2∆ = λn2
[
(q11 + q22 − 2q12)− (q1 − q2)′Q−1

12 (q1 − q2)
]

detQ12

which, on substitution into (8) gives

d2
12 =

(n1 + n2)2

n2
1n

2
2

[
(x̄1 − x̄2)′Λ−2(x̄1 − x̄2)− (q1 − q2)′Q−1

12 (q1 − q2)
]−1

. (11)

Other substitutions for ∆ given by (10) give alternative, less symmetric, expressions for

d2
ij .
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4. Interpretation

From (11), for k = 2 we immediately have

d−2
12 =

n2
1n

2
2

n2
(x̄1 − x̄2)′ Λ−2 (x̄1 − x̄2) . (12)

We next examine the part of expression (11) that is enclosed in square brackets. We have

X̄ =


x̄1

x̄2

X̄12


and

(q1 − q2) = (x̄1 − x̄2)Λ−2X̄12}′

Q12 = X̄12Λ−2X̄ ′12

.

Hence,

d−2
12 =

n2
1n

2
2

(n1 + n2)2
[
(x̄1 − x̄2)′Λ−2(x̄1 − x̄2)− (x̄1 − x̄2)′Λ−1RΛ−1(x̄1 − x̄2)

]
where R = Λ−1X̄12(X̄12Λ−2X̄12)−1X̄12Λ−1 represents projection in the metric Λ onto the

space spanned by the k − 2 rows of X̄12Λ. Thus

d−2
12 =

n2
1n

2
2

(n1 + n2)2
[
(x̄1 − x̄2)′Λ−1(I −R)Λ−1(x̄1 − x̄2)

]
. (13)

Thus, expressions (6), (11) and (13) are our main results.

The interpretation of (13), visualised in Figure 1, is that d−1
12 is a measure of how far

the space of x̄1, x̄2 is from the space spanned by x̄3, . . . , x̄k. These results are expressed

in terms of the Λ-metric but this is a function of the initial rescaling and vanishes on

transforming back to the scales of the original variables.

If x̄1 and x̄2 lie in R then (13) gives a null projection onto I −R but this case is

excluded by our assumption that rankX̄ = k − 1. An indication of the corresponding

results when rankX̄ < k − 1 is given by the collinearity case k = 3 and rankX̄ = 1. Then,

without giving the detailed derivation, it can be shown that d2
12 is proportional to (x̄1 −

x̄2)′Λ−2(x̄1 − x̄2). That the projection term vanishes is consistent and plausible but we

do not know whether it generalises to other reduced rank cases.
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Fig. 1. R is the space spanned by the means

x̄3, . . . , x̄k. The inverse of the distance between

groups 1 and 2 in the intersection space is given by

the illustrated projection onto the space orthogonal

to R.

5. Basic formulae

This appendix contains some basic results for convenience of reference. Most are well-known

and, apart from (A1) and (A2), no derivations are supplied.

Using 1′NQ = 0 shows that

n1q11 + n2q12 + 1′Mq1 = 0

n1q12 + n2q22 + 1′Mq2 = 0

n1q1 + n2q2 +Q12M1 = 0

where N = diag(n1, n2,M). It follows that

n2
1q11 + n2

2q22 + 2n1n2q12 = −1′M(n1q1 + n2q2) = 1′MQ12M1. (A1)
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Similarly,

n1c1 + n2c2 = n1q1 + n2q2 + λ(n1 + n2)1

= −Q12M1 + λ(n1 + n2)1

= −C12M1 + λn1. (A2)

Furthermore, we need

det

α a′

a A

 =
(
α− a′A−1a

)
detA, (A3)

detC12 = det(Q12 + λ11′) = detQ12

(
1 + λ1′Q−1

12 1
)
, (A4)

and

C−1
12 = (Q12 + λ11′)−1 = Q−1

12 −
λQ−1

12 11′Q−1
12

1 + λ1′Q−1
12 1

. (A5)
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