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Project highlights:

e Project importance: to find large, pure samples of rare strong gravitational lenses in
current and forthcoming giant astronomical sky surveys, including and especially the
pathological examples that are under-represented to date in near-infrared surveys,
such as ultra-high-redshift galaxies that reionised the Universe, and dusty star-
forming galaxies that account for half the cosmic budget of star formation. The high



angular resolution afforded by gravitational lensing, ~2-50x the unlensed case, will
provide a window on the structures of these galaxies and the physical processes that
drive their evolution.

e Qutcomes: to discover rare strongly gravitationally lensed galaxies in the Euclid
imaging surveys

e Career development, partners and collaborators: the project will involve joining
working groups of the Euclid space telescope and the LSST project on the Vera Rubin
Observatory, which will give the student visibility in large international research
consortia to promote their professional development.

Project description:

The Euclid space telescope is mapping about a third of the sky to nearly Hubble Space
Telescope (HST) quality. Euclid has begun an avalanche of discoveries of rare gravitational
lenses, increasing the number of known lenses by over a factor of one hundred, illuminating
both the structure of foreground dark matter halos and the structures and properties of the
distant galaxies. The huge increase is especially useful for rare lensing events, such as the
brightest red lensed galaxies that are prime candidates for JWST/ALMA follow-ups, and
which will be mostly from the dusty star forming galaxy population around Cosmic Noon
where the cosmic star formation history peaked.

There are many directions that this PhD project could take, because of the rich abundance
of data and our successful track record with developing relevant machine learning tools; we
outline a few here.

Euclid's ~100,000 strong gravitational lenses have to be found in a catalogue of about a
billion unlensed galaxies. We have solved most of this 'needle in a haystack' problem using a
convolutional neural net trained on 100 million volunteer classifications (Pearce-Casey et al.
2025). The resulting catalogues are still only about 10 percent pure, meaning that around a
million candidates would need careful visual inspection; this is possible, but more progress
could be made by incorporating a filtering stage of automated lens modelling, or using some
other technique to enforce the symmetries of the underlying physics. One direction for this
PhD project is to improve the purity of the machine learning classifications by making better
use of the geometry and astrophysics of gravitational lensing, and of galaxies in general.

A major advantage of having a very large new catalogue of gravitational lenses is that it is an
excellent way in principle to find rare types of object, but this also poses a problem for
machine learning if it has not been trained to find the rare systems. The Euclid and HST
imaging of known lensed dusty galaxies would often fail an expert inspection looking for
lensing, if that expert did not already know it was a lens. Euclid's wide survey, cross-
correlated against infrared surveys with e.g. Herschel and the JCMT, is an excellent starting
point for creating imaging catalogues of dusty star-forming galaxies that can be used for
lensing simulations for machine learning training, which is another possible initial direction
for this PhD project. Again, being able to start with a working lens detection pipeline and
fine-tune it for the problem in hand is a significant time-saver.



Finally, a significant advantage of strong lensing is the angular resolution improvements that
provide an important window on the distant galaxy population, but not all the observations
have the same quality. For example, the Euclid NISP near-infrared instrument has an angular
resolution around a factor of two worse than Euclid's visible VIS instrument. Nevertheless, it
may be that astrophysically-important information is at the threshold of being detected in
the near-infrared, such as the existence of dusty star-forming clumps in the background
galaxies that yield insights on the physical processes that drive the dramatic evolution in the
cosmic star formation history. Machine learning has many tools that can assist, and even if
individual reconstructions are not completely reliable, they may still usefully determine the
population properties when combined with simulations to measure the recovered clump
reliability and completeness (i.e. purity and recall). There is a great deal of successful work
on which to build, if you would like to prioritise the super-resolution and image
deconvolution aspects of this project. We have previously shown that far-infrared and
submillimetre-wave imaging from the ESA Herschel space observatory can be very
effectively deconvolved using a denoising autoencoder machine learning architecture
(Lauritsen et al. 2021), and we've deployed the same technology on simulated data for the
proposed NASA PRIMA space telescope (Donnellan et al. 2024). We also currently have
postdoctoral researchers working on super-resolution of Rubin LSST gravitational lensing
imaging, and of Euclid near-infrared imaging of galaxies in general, using the Pix2pix
machine learning architecture.
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