

eSTEeM final report October 2021 Remote Pair Programming Page | 1

Investigating the Perceived Benefits to

Computing Students of Remote Pair Programming

Keywords: pair programming; distance learning; community

Janet Hughes, Ann Walshe, Bobby Law, Brendan Murphy

08.10.2021

eSTEeM final report October 2021 Remote Pair Programming Page | 2

Executive Summary

Pair programming is typically taught in face-to-face classes to enhance students' coding expertise. Distance
learning students have little or less opportunity for that enhancement. Difficulties in providing a pair
programming experience for students are not exclusive to the OU: they were experienced by other higher
education institutions which switched delivery modes as a result of the 2020-021 pandemic, being forced to
design, develop and implement online and distance learning education. Whilst the technical logistics of
remote pair programming are not particularly problematic, the design of the educational logistics needs
sensitivity. Educators may wonder if the effort required to arrange remote pair programming is worthwhile,
particularly given that partnerships need to be arranged between students who have never met, as is the
situation for the OU.

This remote pair programming project was designed to explore the non-technical benefits of different
methods of experiencing remote pair programming. Results indicate that students perceived that working
remotely with another student increased their verbal communication skills and their ability to collaborate,
problem solve, make decisions, and take initiatives –- and slightly enhanced their sense of learning from
others. Paradoxically, the area which most merits further support is in feeling connected to others in a
module, which is a key issue for Open University students and for others in education in a locked-down
pandemic world. However, other benefits identified by participants related to reassurance, mentoring, and
learning to ask for help –- and student participants were keen for further understanding of the experience of
programming in the real world. We provide recommendations for module teams and tutors to consider
when designing remote pair programming experiences.

eSTEeM final report October 2021 Remote Pair Programming Page | 3

Aims and scope of the project

Our computing students learn how to program largely individually and remotely. As reviewed in Zarb &
Hughes (2015), previous research indicates that pair programming can lead to improved quality of
programming, enhance programming skills and increase self-confidence when programming. This project
aimed to investigate the benefits to our students of engaging in remote pair programming in their learning.
In particular, the investigation aimed to go beyond academic learning to explore community and
employability benefits, both of which are relevant to NSS amongst other measures of student satisfaction.

This work is designed to test if social and community experiences, as identified by related research in
industry and in campus-based classrooms, can be gained by distance learners of programming in higher
education whose pair partners are online rather than sitting alongside them in a laboratory.

Activities

Meta-studies, such as that of Umapathy (2017) and Hannay (2009), have examined a number of quantitative
studies, concluding that pair programming brings value to academic performance and programming quality.
In this work, qualitative research was the primary approach used in order to discover students' perceptions
of the non-technical benefits of remote pair programming. A number of published studies confirm that a
qualitative research methodology is valuable to gain insight into situations of pair programming, e.g. Lewis
(2015), Ying (2019).

Study design
The research was designed to be descriptive, to allow participants to identify their feelings about three
different types of experience in the specific situation of one of their preliminary programming modules.
Textual data would be gathered by survey research and focus group to gain insights into the feelings of a
small sample of distance learning students. Data collection would be completed over a short period during
their module studies and without an undue pressure on their time. All aspects of the work was formative
and without judgment or impact upon assessments. Ethical agreement for the study was obtained in
advance of students being invited to participate.

Participants
Volunteer undergraduates were sought from module TM112. Lasting 21 weeks, about one third of the
module introduces Python programming. All students contacted had earlier completed module TM111,
which introduced programming using a block-based version of Scratch rather than a text-based language. By
email, students on the Python module were provided with a summary of the research project and invited to
participate. No condition was set upon participation, for example relating to experience, race, gender, age or
occupation, and no demographic data was collected from the students. It was made clear that participation
was unrelated to the module assessments or results. Having submitted consent forms, 43 students
participated in the project (approximately 17% of the students registered). Broadly in keeping with the
gender balance for the module, 25% of the participants were female.

Procedure
OU students are often provided with videos about new topics to support their learning, or are offered the
opportunity to watch tutors performing in a live demonstration of new procedures or techniques. Each of
these may provide students with a vicarious experience of pair programming. In this project, three methods
of experiencing pair programming therefore were offered, ranging from fully vicarious to fully direct. All
students who had confirmed their consent were invited to participate via all three methods:

A. passive participation (watching a video of two tutors pair programming)
B. indirect participation (watching two tutors remote pair programming in real time)

eSTEeM final report October 2021 Remote Pair Programming Page | 4

C. direct participation with an online student partner (remote pair programming).

In each circumstance, the task to be solved had been devised by the tutors to correspond to the level of
difficulty and learning topics the participants were studying at that stage in their module.

Passive participation
In method A, a video of two tutors pair programming at a computer in a laboratory situation was made
available for participants to watch at a time or times of their convenience. The video from method A could
be watched before or after methods B and C, or before and after the other methods. Audio accessibility
concerns were addressed by providing a transcript on request; one participant made this request. Pair
programming guidelines (Zarb, 2015) had been issued to the tutors in advance. Python was used by the
tutors to solve a modest task, lasting less than an hour.

Indirect participation
In method B, the two tutors demonstrated further pair programming in real time using Adobe Connect
(which was the small pilot phase 1) and Microsoft Teams (which was the larger phase 2 study). Again, Python
was used by the tutors to solve a different but equally modest task, lasting less than an hour. In phase 1,
tutors used a regional Adobe Connect room for the work. A guidance sheet was developed to outline how to
share a programming screen using Adobe Connect. Microphone and webcam in Adobe Connect were used
in the normal way. In phase 2, tutors and students were all enrolled in a Microsoft Team, with all
participants also enabled via Microsoft Teams to speak and share video, and use chat. Tutors also were given
the capability to share their screen or desktop, which is the method by which they switched roles from driver
to navigator: one tutor began as the driver, launching the Python IDLE, positioning a shell window and an
editor window side-by-side, and saving the work to his PC; that tutor shared his desktop with the navigator
tutor. When it was time to hand over the driver role, the driver tutor gave control to the navigator tutor
(hovering the mouse at the top of the screen and choosing Give control to the named tutor from the
pop-up toolbar). A guidance sheet was developed to outline how to do this. If the navigator wanted to take
over as driver, the same pop-up toolbar was used to request control.

Only method B had a fixed date and time, since it was necessary for the tutors to agree an appropriate time
for their real-time remote programming; participants were notified of that date and time and invited to
attend. Microsoft Teams allowed for the tutors faces to be visible whilst they discussed the given task,
planned and then attempted to reach a solution, with screen sharing and swapping of control as they
progressed their solution. Participants were able to interact with each other using audio and video at the
start and again at the end, and ask questions or make observations to the tutors at any time by means of the
chat. Audio accessibility concerns were addressed by offering Microsoft Teams live captions.

Direct participation
For method C, participants were asked about any preferences for partnering with another student to solve a
small Python task anticipated to last no more than one hour. In particular, participants were asked for any
preferences for day of the week, time of the day, gender of the partner, and if there was anything else they
wished to disclose before pairs were arranged. One participant had identified a preference to work with
another female. One participant expressed a concern about their level of English language. A small number
of participants expressed some anxiety about their novice level of programming ability.

Participants were then partnered to ensure close matches of programming experience (as judged by their
performance in the previous block-based Scratch module) and confidence (which was the aspect most
commented upon in response to preferences), as per the published literature of best practice in pair
programming. Scheduling needs were considered next to match participants' availability, and then any other
concerns disclosed. All sessions were scheduled to take place after method B had concluded, to avoid a

eSTEeM final report October 2021 Remote Pair Programming Page | 5

clash of the pair work with a major assignment submission date. None of the pairs had worked with each
other before or met each other, either face-to-face or online.

Pair programming guidelines were issued to the students in advance of the task. In phase 2, when Microsoft
Teams was used, each pair was given a private channel for their work and reassured that no recording was
being made of their actions or discussion. Guidance was sent to each pair about the use of Microsoft Teams
to give and take control for driving and navigating while pair programming (using the same techniques
described in method B). A member of the project team accompanied each pair at the start of their pair
programming session to introduce the students to each other and encourage some ice-breaking
conversations, until it was clear that a pair was able confidently to communicate and share Python. At that
point, the research team member left Microsoft Teams, allowing each pair privacy to tackle a given Python
problem of a similar level of difficulty earlier tackled by tutors.

Data Collection

Survey data
After experiencing each technique, students were asked to complete an online survey to describe their
perceptions of the benefits of pair programming to social and community feelings, including giving
comments. An independent student volunteer had earlier provided feedback on the ten survey items, one
of which was amended considerably as result of the pilot phase of the research. Each survey item asked
students which of five responses -- strongly agree, agree, neutral, disagree, and strongly disagree -- best
reflected their own feelings about a given statement after participating in one of the three pair programming
methods. The ten survey items were:

1. I feel that I can work with others using collaborative communication, problem solving, discussion and
planning.

2. I feel that I can analyse facts and circumstances and ask the right questions to diagnose problems.
3. I feel connected to others in this course.
4. I feel I can make appropriate decisions, in light of available information, in sensitive and complex

situations.
5. I feel that I can communicate orally in a clear and sensitive manner which is appropriately varied

according to different audiences.
6. I feel that I can take initiative and action unprompted to achieve agreed goals.
7. I feel that I can deal confidently with challenges.
8. I feel that I can reflect on my own practice and strengths and weaknesses.
9. I feel that other students help me learn.
10. I feel that I can analyse, reason and problem solve.

Items 3 and 9 were based on Rovai's Classroom Community Scale (Rovai, 2002), which was described as
“a test instrument that can assist educational researchers in studying community in virtual classrooms and
help identify course design and instructional delivery that best promotes the development of ‘community’”.

Item 3 focuses on the feelings of connectedness with other community members, whereas item 9 focuses on
the feelings of interaction with others for learning, for example by sharing understanding.
Items 1 (collaboration), 2 (diagnostic problem solving), 4 (decision-making), 5 (verbal communication), 6
(initiative), 7 (self-efficacy), 8 (meta-cognition), and 10 (analytical problem solving) were derived from
Jackson and Chapman's identification of behaviours associated with generic non-technical competencies
most relevant to industry, particularly in the field of business (Jackson, 2012).

Each of these ten survey items were checked to be relevant to elements of the OU’s employability
framework.

eSTEeM final report October 2021 Remote Pair Programming Page | 6

Focus group data
Reviewing the survey data results and comments, we identified topic areas to be probed further by means of
a focus group. Topics were discussed, reviewed, and five key areas identified as starter questions with up to
three associated prompts for the focus group facilitator to use if necessary. Questions were reviewed before
use by an independent student to confirm their clarity, open nature, and that there was a logical sequence
from general to specific. Microsoft Teams was the channel for the discussions.

Four participants had volunteered to participate in the focus group. Subsequently one was unable to
participate and therefore three students met once using Microsoft Teams to discuss the five topic areas.
Participants were given prompts for the discussion areas in advance. The focus group event itself was
conducted by another independent student with appropriate experience, and recorded then transcribed for
later analysis.

Data analysis

Quantitative survey data was analysed by determining the medians for the Likert-type data and comparing
the frequencies of different categories for each method of participation. ANOVA and Tukey's HSD tests were
run to determine any statistically significant differences in experiences using the different methods. Despite
only two categories not suggesting a statistically significant difference, these results are not reported here
since the collected data was Likert-type, and therefore it was not possible to verify that the participants
viewed the categories as being on an interval scale. Instead, median values were determined.

Free text comments from the survey and the descriptive statistics were used to identify themes for
exploration using the focus group. Two members of the project team independently reviewed the focus
group recording and transcription, and coded key ideas. A third member of the project team reviewed these,
and thereafter the main themes were confirmed.

Findings

1. Survey
Results for all survey items for each method of participation are presented in Figures 1-3. Note that on two
occasions in the passive participation survey (Figure 1), and one further occasion in the direct participation
survey (Figure 3), one student did not select a response for a survey item. Survey items, as listed in the Data
Collection section above, are labelled 1-10 on the vertical axis.

eSTEeM final report October 2021 Remote Pair Programming Page | 7

Figure 1: Passive participation (video) N=34

Figure 2: Indirect participation (live tutoring) N=22

eSTEeM final report October 2021 Remote Pair Programming Page | 8

Figure 3: Direct participation (student pair) N=25

Passive method: viewing the video of tutors pair programming

Nine of ten items had a median value of ``agree''; item 3 was the exception: ``I feel connected to others in
this course'', had a median value of ``neutral'' (N=34). An explanatory comment made by one participant to
accompany item 3, connectedness, was ``I rarely have contact with anybody on the course''.

Indirect participation method: watching tutors pair programming live

As with the passive method, nine of ten items had a median value of ``agree'', whereas the median value of
item 3 was mid-way between ``agree'' and ``neutral'' (N=22). This indicated a small increase in a feeling of
connectedness with others in course: as one participant added to the survey response, ``It was good to see
so new faces and hear their questions and comments.''

Direct participation: pair programming with an online partner

Nine of ten items had a median value of ``strongly agree''; for the tenth, item 3, there was a further increase
in a feeling of connectedness, with a median value of ``agree'' (N=25). Four comments added to the survey
responses confirmed positive feelings, such as ``Was a great idea. Allowed me to connect on a personal level
by chatting socially as well as regarding the task at hand" and ``pair programming with an actual student
made me feel very connected". Interestingly, the event appears to have prompted one student to connect
further with peers: ``I have been using a social program called discord to speak with the other students since
taking part in the task" (emphasis added). In contrast, one student concluded that pair programming was
not a preferred mode of working: ``i think i prefer to work in isolation or with people I am familiar with
(emphasis added).

Figures 1--3 illustrate that increases in the extent of directness in participation by the students are
associated with increases in their feelings of agreement with all items in the survey. These findings were
then explored via a small focus group.

2. Focus group
Five focus group topic areas were identified from the survey data:

eSTEeM final report October 2021 Remote Pair Programming Page | 9

• feelings (how did participating in the project make you feel?)
• learning (what did you learn about yourself?)
• looking ahead (how should this project be taken forward?)
• logistics (how did you make decisions with your partner?)
• conclusion (of all the things discussed, what to you is the most important? is there anything else you

want to share?)

Comments were compared and coded, codes were reviewed and revised, and from these a set of themes
were confirmed (Table 1).

Table 1. Focus group analysis

Comments Themes
reassurance, review, feedback, mentoring, fine-tuning, share ideas for
resources, discuss and get inspiration when stuck, extra exposure to the topic,
each modality had its place

how it helped

positive, helpful, valuable, good, enjoyable, collaboration, communication,
interaction, learned, listen to other ideas, helped others to learn, learn to ask
for help, social discussion, social dimension, social confirmation, echoing

benefit

screen sharing, too simple scenarios, disparity of experience, put on the spot,
performing less than storming/norming, sessions too few, too far apart

downside

more real-world scenarios, more sessions, shorter gap in between, hackathon
or group session, swapping to different pairs

suggestion

Most comments from which the themes were drawn were self-explanatory. Deserving of additional
explanation is the comment that each modality has its place. One student made this comment on more than
one occasion, emphasising its importance to him:

“I think the pair programming where you're actually on a one to one with somebody else has its
place but I think the other two modalities where you watch a video recording and you could
have an option and listen to a bit again, the middle situation where you're attending a webinar
and you can ask questions through the chat box. So, I think they all have their role.”

“I think the initial video, you know, is helpful to see how two professionals might do it and ... if
it's already recorded you have the opportunity to go back and if there's something you're not
quite sure of you can always replay the bit again. And then on live you can put in the web chat.
But obviously actually doing it there's nothing like a live situation'”

Comments about learning to ask for help were noted by one student as useful for the development of an
employability skill:

“There is a lot of scope for a lot of thoughts filling your head and so getting used to and indeed
experiencing your first kind of asking a colleague for that kind of help is quite useful in an
employability sense and it makes you a better employee to be able to struggle and ask.”

One pair identified a difference in the level of their skills. The less experienced student described himself as
the `”back-seat driver'” rather than the navigator. That student recognised benefit to him of the pairing but
was concerned on behalf of his partner:

eSTEeM final report October 2021 Remote Pair Programming Page | 10

”when I was stuck, A was there to provide inspiration. I don't know how much A found that
situation beneficial”

Reassuringly, student A had identified different benefits for himself, and responded with observations about
mentoring:

“to mentor is also an essential part of being a programmer cos that's when you get a lot of the
rough corners and a lot of the funny questions asked and you learn a lot from mentoring, as much
as you do from being mentored.”

Discussion

1. Survey findings

Passive participation
Results indicate that even the apparently passive process of watching a video of two tutors pair
programming was perceived positively by the majority of students for all items, except for item 3: I feel
connected to others in this course. However only one quarter of the students, approximately, felt that
watching a video helped develop connectedness. For those students, there may have been some revelation
of the tutors' personalities. Possibly seeing the tutors' hesitations and occasional doubts (or trivial
programming errors) did help some students to recognise that everyone has the same human fallibility, and
so the perception of connectedness was with the tutors as well as with their peers. A relevant comment
made by one participant demonstrated some feeling of familiarity with the two tutors in the video: ``In the
video Brendan and Bobby were clear with their commutation (sic), I feel it's good example and believe I
could work with someone as easily as they have''. Watching a video of tutors pair programming could be
described as an example of vicarious learning, which has been recognised for some decades since the
concept was first introduced by Bandura (1965). Stenning et al. (1999) have proposed that learning can occur
by observing others participate in dialogue.

It is also possible that some students appreciated actually hearing the tutors pronounce the code: Hermans
et al. (2018) reported that novices may have additional cognitive load as a result of the fact that vocalisation
of code is not standardised. One of their examples is the pronunciation of an assignment statement like x =
5: ``is it “x is 5”? Or “set x to 5”? Or “x gets 5”?''; they advocate the development of consensus about how
code snippets should be pronounced, which they also speculate may help pair programmers to
communicate (Hermans et al., 2018). In related work, Swidan and Hermans (2019) found that reading code
aloud could contribute to improved code comprehension for primary school children learning to code.

Clearly very many higher education institutions have embraced the use of video for online teaching during
the pandemic circumstances, amongst other digital resources. There is already evidence that the use of
digital resources has had some positive impacts; as an example, Pochino et al. (2020) described a study of
over 200 teachers in one European country which found a number of positive impacts of the use of digital
resources in online teaching during the pandemic; student social experiences and community did not
feature, however, and notably the authors describe the period as being one of social detachment, and social
distance. Veldthuis et al. (2020) compared flipped classroom teaching in 2019 with that in 2020, when it had
to become fully remote; they concluded that preparing high quality lecture materials can be successful, but
in their study these are accompanied by other mechanisms for student discussion and engagement. In
general, videos can be time-consuming to produce well, and their use without additional support for
student-student interactions neglects the non-technical aspects of the students' higher education
experience.

eSTEeM final report October 2021 Remote Pair Programming Page | 11

Indirect participation
Using Microsoft Teams to watch two tutors pair program remotely in real-time was perceived even more
positively by the student participants. Notably stronger agreement was in the perceptions of decision-
making ability (item 5) and confidence (item 7). One observation made in comment about the indirect
participation method suggests that participants may have been checking and testing the approach or
decisions they would have taken themselves, and comparing these to the tutors' actions, thereby increasing
their confidence:

“I was programming the solution along with the presenting pair. So it was interesting to see
where I started and where they started”.

This comment resonates with early work by Sutton (2001) who proposed that students who observe and
actively process interactions between others can benefit by means of the vicarious interaction.

Using this indirect participation method, even the connectedness issue was perceived more positively. This is
likely to be a result of the students seeing, hearing and 'chatting' to each other at the start and at the end of
the pair programming session, and reading the comments and questions typed by individuals during the
session. Students would have gained further familiarity with their tutors, further recognising their different
personalities and programming approaches.

To increase students' confidence with interacting in such a circumstance, educators may need to provide
advice and encouragement about interrupting and querying. Recent work by Mardi et al. (2021) suggested
a novel way to guide new students towards successful dialogue during pair programming, which they
described as pair coaching: an expert and a novice were observed pair programming in real-time by the
students. Since the novice was also an educator, her questions were delivered confidently, at times helping
the expert to realise that his explanations were less than perfect. The students were able observe the
technique of interacting in a way that was, as Mardi et al. (2021) summarised, ``being intellectually
disruptive in a constructive way''.

Direct participation
Most evidently appreciated by the participants was direct participation, that is the experience of actually
pair programming with one of their peers. Predictably, the direct learning process was perceived by
participants to be more useful than the vicarious and indirect methods. Bonwell and Eison (1991) described
active learning as ``instructional activities involving students doing things and thinking about what they are
doing''. Multiple authors since have provided evidence of the effectiveness of active learning, e.g. as
summarised by Prince (2004) and in Gonzalez' (2006) study which found that more CS1 students with an
active learning experience had passing grades and fewer withdrew than those with a regular learning
experience. The survey responses in this study showed that virtually twice the percentage of participants
were strongly in agreement with each one of the item statements for this method compared to the other
two methods. Strongly agree and agree responses had increased predominantly at the expense of neutral
responses. Even item 3, connectedness, was markedly different in this method compared to the other two
methods: the majority of students agreed for the first time that they felt connectedness to others in the
course.

Whilst there was greater agreement for all the items, those which were notably more strongly agreed with
by means of the direct participation method were verbal communication (item 5), decision-making (item 4),
and initiative (item 6). An interesting observation by one student after pair programming with a partner:
``Having done this exercise, I now think I have points to work on to improve communication''. Improved
confidence with verbal communication itself may be contributing to improved confidence with decision-
making and taking initiatives. Rodriguez et al. (2017) investigated different aspects of effective pair
programming collaboration in a study of undergraduate computer science students, and concluded that the

eSTEeM final report October 2021 Remote Pair Programming Page | 12

best outcomes for the students resulted from lively and substantive content-related talk between the pairs --
and noted that self-explanations and think aloud by drivers, plus active feedback from navigators, should be
encouraged. Self-explanations have been recognised as beneficial by numerous researchers since the
seminal work by Chi et al. (1994), who also credited the early findings by Webb (cited in Chi, 1994) that
"giving elaborate explanations was positively related to individual achievement"; Chi et al. commented that
"the advantages gained by explaining to others and to oneself are comparable". Zarb and Hughes (2015)
found that communication guidelines can ease students towards successful interactions with their pair
programming partner.

2. Focus group findings

The focus group codes and themes identified in this work correspond reasonably well to those described by
Celepkolu and Boyer in their 2018 work analysing students' reflections on pair programming in CS1.
Examples of such correspondences are:

• listen to other ideas as an example of ``exposure to different ideas''
• learn to ask for help as an example of ``deeper learning''
• social dimension as an example of ``social growth''
• disparity of experience as an example of ``partner''
• positive, helpful, valuable, good, enjoyable as examples of ``satisfaction''.

Celepkolu and Boyer (2018) extended their thematic analysis to derive three dimensions that encompassed
all seven of their themes: cognitive, social and affective. Each of these dimensions has at least one
correlating code in the responses given in this focus group.

Key issues identified via the focus group are summarised as follows:

1. all three methods of experiencing pair programming provided some benefit
2. positive experiences greatly outnumbered the drawbacks
3. positive experiences reported correspond to those reported in previous pair programming research:

exposure to different ideas, deeper learning, social growth and satisfaction
4. downsides mostly related to event logistics
5. even with a poorly-matched pair, other benefits were identified (learning to ask for help,

mentoring).

There are similarities here with the findings of VanDeGrift (2004) whose students did not all live on campus:
they identified the social nature of the pair programming work as one of the benefits but noted that the
logistics of scheduling time for meetings was problematic; unlike in that study, the students in this instance
did not report partner personality differences or skills levels as problematic

These results also are comparable to the recent findings by Ying et al. (2019) in a qualitative study in which
94\% of over one hundred introductory computer science course students introduced to pair programming
reported at least one positive sentiment about the experience. Their thematic analysis reported benefits
such as improving learning experience (including broadens problem-solving techniques), career skills
(including learn to work together), positive atmosphere, networking (including social/communication skills),
more engaged and personal gain (including builds confidence) (Ying et al., 2019),

Limitations

A number of limitations existed in this project. In the first instance, the students were self-selecting: they
may have been hoping for benefits rather than being completely objective. Secondly, their responses to the

eSTEeM final report October 2021 Remote Pair Programming Page | 13

items reflect their perceptions, which are not necessarily correct. Since Likert-type items were used, it must
be recognised that the participants may have preferred to respond in the central categories (although a
small number of responses were “strongly disagree” and a large number were “strongly agree”, and so this
limitation may not apply). However they may have preferred to agree with the statements given. Thirdly,
the sample size was not large and the methods were not of an extended duration. Students could watch the
video as many times as they wished, and were at liberty to arrange as many further pair programming
meetings with their partner as they wished, privately, for a period of three more months - but the indirect
participation method will have been only experienced once. Furthermore, the survey and focus group were
not repeated with a similar group of students who were learning to program solo, from home, without any
of the pair programming experiences at all; therefore there is no benchmark against which these results can
be compared. Finally, this work was designed to understand the experiences of the participants as they felt
it; it is unlikely that the situation and its interactions could be entirely replicated, and therefore the results
cannot be generalized to a wider context with dissimilar samples.

Main findings

This project aimed to investigate if distance learners experience non-technical benefits from participating in
remote pair programming. Student participants experienced three different methods of pair programming,
ranging from passive to direct involvement. Results from the survey and from the focus group suggest
associated non-technical benefits, irrespective of the specific method experienced. Whilst all three methods
of experiencing pair programming were reported positively by the participants, the direct participation
method of working with a remote partner led to the strongest agreement that these benefits accrued, even
when working with a student who was previously completely unknown. Pairing of students was achieved on
the basis of their previous experience, their availability, and any special issues disclosed. Only one pair of
students reported any mismatch of ability level, but still these students found value in the interaction.

Overall, benefits perceived included improvements in verbal communication, problem solving, initiative and
decision-making. Interactions were found to be good in terms of the social experience, for confirming
technical understanding, for gaining inspiration, for learning how to ask for help and for developing the skill
of mentoring. The social and community benefits of remote pair programming perceived by participants
were similar to some reported previously as experienced when programming face-to-face with a partner;
Ying et al. (2019) for example, included improved learning experience, networking and a positive
atmosphere amongst positive perceptions of pair programming.

The findings of this project are relevant, given the current importance of optimising remote teaching and
learning in the circumstances of locked-down education. Educators are aware that many aspects of student
life contribute to the student experience in higher education: social and support aspects can be crucial to
student retention, and academic progress may depend upon mental welfare as much as high quality
teaching. Therefore designing into the curriculum opportunities for distance learning students to interact
with tutors and with each other should contribute to the sense of community and opportunity for
collaboration, as well as further develop some of the soft skills of the type valued by employers.

In the pre-pandemic software development world, programmers could be working simultaneously in the
same room or building, conveniently sharing questions and suggestions. New employees could gain
considerably from supportive colleagues nearby. There is considerable speculation that employment in the
post-pandemic world will not have the same office-based style of working, particularly if employers believe
that home working can minimise costs and optimise efficiency. That being the case, new graduates will have
considerable need of remote working communication and collaboration skills as experienced here in remote
pair programming if they are to avail themselves of colleague support networks. Direct participation remote
pair programming can help students to develop the social confidence to discuss their programming with new
acquaintances. The indirect participation method can help students to regard their more experienced tutors

eSTEeM final report October 2021 Remote Pair Programming Page | 14

as approachable, learning how to break the social barrier and/or discomfort of engaging with more
experienced or senior others to articulate their questions. In these ways at least, we believe that non-
technical remote pair programming skills can benefit organisations as well as individuals.

In the context of this project, the responses from the student participants suggest a positive view of the
original speculation: is the effort of arranging remote pair programming worthwhile? Remote pair
programming can supplement the social and community aspects of the student experience that are
otherwise limited for distance learners, even when students are partnering with someone whom they have
never met, and it may help prepare students for the non-technical aspects of the post-pandemic world of
home working.

Recommendations

Recommendations for module teams and tutors designing programming teaching for OU students are:

• Prioritise real-time interactions rather than devoting lots of attention to the creation of faultless
demonstration videos: considerably more value will come for students' sense of community by
means of them experiencing authentic real-time events.

• Focus on preparing the students for communication, turn-taking, interacting, and questioning rather
than the process of using the technologies: they need support to develop their confidence
establishing a social dynamic in a non-solitary environment.

• Aim to match student pairs according to expertise and self-efficacy, but also establish and take
account of any expressed preferences for partnership (for example regarding the gender of the
partner) or special needs, such as anxiety about skill or level of English-language.

• Encourage students to appreciate the benefits that can be gained when partnering up people even
of different levels of expertise, particularly in the areas of desirable soft skills, such as articulating
their own reasoning, learning to ask for help, and mentoring.

Future work

Our findings have been shared with colleagues leading relevant modules, in the hope that they may wish to
extend the remote pair programming into other programming courses. It is believed that the benefits of
remote pair working should be considered in other (non-programming) modules which may benefit from
greater communication and collaboration, such as database management and analysis, or information
security. A future project might be to develop guidance for students specifically to help the development of
the professional and sensitive skills of querying, challenging and defending their own work. Further work is
needed to examine the connectedness issue to understand what is needed to support it further.

Finally, we believe the OU should continue to explore alternative technologies for remote pair programming,
such as Microsoft LiveShare (https://code.visualstudio.com/learn/collaboration/live-share) and Replit
(https://replit.com/). Whilst many students can find ways to succeed with different technologies for pair
programming, technological hurdles may be especially off-putting for distance learning students working
solo from home, e.g. Adeliyi et al. (2021). A tricky interface or process may be sufficient barrier to others to
continue, similar to the communication problem described by Canfora et al. (2003) as one of four causes of
pair dismissal.

eSTEeM final report October 2021 Remote Pair Programming Page | 15

Impact
a) Student experience
• In what ways has your project impacted on student learning?
• How is your project contributing to increasing student success (i.e. retention, employability, etc.)?
• Have there been or will there be any benefits to students not directly involved in your project?

Our work on this project has increased our awareness of the benefits that students can gain from working
together with their fellow students. We have discovered new possibilities for supporting our students and
helping them gain employability skills such as working in a team and learning how to ask for help.

The YouTube video (1) Pair programming research project: TM112 20D - YouTube has had 102 views.

b) Teaching
• How have you affected the practice of both yourself and others within the OU?

Our project prompted discussions with academic colleagues including a postgraduate student who is
investigating tools for pair programming, and the student’s supervisors, leading to us sharing literature
references, ideas, and jointly presenting a conference poster.

There is ongoing work within TM112, with further work planned in Scotland by the project team members.
Other colleagues in the School of Computing and Communications are interested in investigating further the
tools that enable pair programming, and are planning to run some pair programming sessions on other
modules that include programming, such as M269 which uses programming as a tool for algorithmic
problem solving.

The TM112 rolling action plan as presented to C&C Board of Studies in October 2021 includes:

In future, it may be worth considering a training event on how tutors can use shared programming screens
especially in drop-in sessions (or virtual computing labs).

We believe that the project has contributed to professional development of all members of the project team
with respect to the research topic, ethical procedures and in general it has enlarged the team’s appreciation
of the benefits to the OU of the eSTEeM initiatives.

• What has been the impact of your project outside the OU?
The Covid situation has made our project even more relevant to outside institutions as they moved to online
teaching. We were able to discuss our project with participants at several conferences.

Our CSEDU paper has been cited by a set of researchers in Linkoping University, Sweden.

Our SIGCSE poster has been downloaded 91 times, including 10 times in the last six weeks (as of October
2021).

We shared the video (with Brendan and Bobby’s permission) upon request with Glasgow Caledonian
University, with feedback from the AL who also teaches there as follows:-

I do not have any specific feedback as such. I cover the topic of pair programming as part of my
discussion about the use of agile methods on the 1st year module fundamentals of software

https://www.youtube.com/watch?v=_Og2D3hs54A

eSTEeM final report October 2021 Remote Pair Programming Page | 16

engineering. I try very hard to relate what I am delivering to the programming that the students do
on the module programming one but there is very little opportunity to investigate pair programming
as such.

I put the link to the video up as part of the preparation and as feedback on what pair programming
was about but I have not had any specific comments from students. I think there is scope for using
the video more specifically in relation to what pair programming is and for following this up with a
couple of tutorial questions. There may be scope for doing this in the next presentation of the
Fundamentals of Software Engineering starting in May.

I would be interested in hearing how you are using/planning to use the video on TM112. My one
observation is that it is a bit long at 29 minutes. I think that in principle this is a good resource that
illustrates the idea of collaboration very well.

c) Strategic change and learning design
• What impact has your work had on your Unit’s or the University’s policies and practices?

d) Any other impact
• For example, secured additional external funding.

List of deliverables

Workshop: : Janet Hughes, Bobby Law, Brendan Murphy, Ann Walshe (2021) Remote pair programming at
10th eSTEeM annual conference 30th June – 1st July 2021, Online

Adeliyi, Adeola; Hughes, Janet; Kear, Karen; Law, Bobby; Murphy, Brendan; Rosewell,
Jon; Walshe, Ann and Wermelinger, Michel (2021). Remote Pair Programming. In: SIGCSE'21 -
Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, 13-20 Mar
2021, Virtual, ACM.

Hughes, Janet; Walshe, Ann; Law, Bobby and Murphy, Brendan (2020). Remote Pair
Programming. In: 13th International Conference on Computer Supported Education, 02-04 May
2020, Online (originally Prague, Czech Republic), pp. 476–483.

Poster presentation: Janet Hughes, Bobby Law, Brendan Murphy, Ann Walshe (2019) Online pair
programming: Benefits to distance learning students at ninth Pan-Commonwealth Forum on Open Learning
(PCF9), 9-12 September 2019, Edinburgh https://www.col.org/about/pan-commonwealth-forum/ninth-pan-
commonwealth-forum-open-learning-pcf9

Figures and tables

Figure 1: Passive participation (video) N=34
Figure 2: Indirect participation (live tutoring) N=22
Figure 3: Direct participation (student pair) N=25
Table 1: Focus group analysis

http://oro.open.ac.uk/view/person/aa7583.html
http://oro.open.ac.uk/view/person/jh33848.html
http://oro.open.ac.uk/view/person/klk2.html
http://oro.open.ac.uk/view/person/rl2959.html
http://oro.open.ac.uk/view/person/bm475.html
http://oro.open.ac.uk/view/person/jpr2.html
http://oro.open.ac.uk/view/person/jpr2.html
http://oro.open.ac.uk/view/person/aw86.html
http://oro.open.ac.uk/view/person/mw4687.html
http://oro.open.ac.uk/74995/
http://oro.open.ac.uk/view/person/jh33848.html
http://oro.open.ac.uk/view/person/aw86.html
http://oro.open.ac.uk/71776/
http://oro.open.ac.uk/71776/
https://www.col.org/about/pan-commonwealth-forum/ninth-pan-commonwealth-forum-open-learning-pcf9
https://www.col.org/about/pan-commonwealth-forum/ninth-pan-commonwealth-forum-open-learning-pcf9

eSTEeM final report October 2021 Remote Pair Programming Page | 17

References

Adeloa Adeliyi, Janet Hughes, Karen Kear, Bobby Law, Brendan Murphy, Jon Rosewell, Ann Walshe
and Michel Wermelinger (2021). Remote Pair Programming. In: SIGCSE'21 - Proceedings of the 52nd ACM
Technical Symposium on Computer Science Education, 13-20 Mar 2021, Virtual, ACM.

Vasa Buraphadeja and Jirang Kumnuanta. 2011. Enhancing the sense of community and learning experience
using self-paced instruction and peer tutoring in a computer-laboratory course. Australasian Journal of
Educational Technology 27, 8 (2011).

Gerardo Canfora, Aniello Cimitile, Aaron Corrado Visaggio. 2003. Lessons learned about distributed pair
programming: what are the knowledge needs to address? In: WET ICE 2003. Proceedings. Twelfth IEEE
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, 314-319.

Mehmet Celepkolu and Kristy Elizabeth Boyer. 2018. Thematic analysis of students’ reflections on pair
programming in cs1. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education.
771–776.

Michelene TH Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian LaVancher. 1994. Eliciting self-
explanations improves understanding. Cognitive science 18, 3 (1994), 439–477.

Soroush Ghorashi and Carlos Jensen. 2016. Jimbo: a collaborative IDE with live preview. In Proceedings of
the 9th International Workshop on Cooperative and Human Aspects of Software Engineering. 104–107.

Brian Hanks, Charlie McDowell, David Draper, and Milovan Krnjajic. 2004. Program Quality with Pair
Programming in CS1. In Proceedings of the 9th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’04). ACM, New York, NY, USA, 176–180.

Jo E Hannay, Tore Dybå, Erik Arisholm, and Dag I. K. Sjøberg. 2009. The Effectiveness of Pair Programming: A
Meta-Analysis. Inf. Softw. Technol. 51, 7 (July 2009), 1110–1122.

Janet Hughes, Ann Walshe, Bobby Law, and Brendan Murphy. 2020. Remote Pair Programming. In 12th
International Conference on Computer Supported Education, CSEDU 2020.

Denise Jackson and Elaine Chapman. 2012. Non-technical competencies in undergraduate business degree
programs: Australian and UK perspectives. Studies in Higher Education 37, 5 (2012), 541–567.

Sandeep Kaur Kuttal, Jarow Myers, Sam Gurka, David Magar, David Piorkowski, and Rachel Bellamy. 2020.
Towards Designing Conversational Agents for Pair Programming: Accounting for Creativity Strategies and
Conversational Styles. In 2020 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 1–11.

Teerapong Leelanupab and Tiwipab Meephruek. 2019. CodeBuddy (Collaborative Software Development
Environment): In- and Out-Class Practice for Remote Pair-Programming with Monitoring Coding Students’
Progress. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE ’19). Association for Computing Machinery, New York, NY, USA, 1290.

Colleen M. Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in Pair Programming. In
Proceedings of the Eleventh Annual International Conference on International Computing Education
Research. Association for Computing Machinery, New York, NY, USA, 41–50.

Fatemeh Mardi, Keith Miller, and Phyllis Balcerzak. 2021. Novice - Expert Pair Coaching: Teaching Python in a
Pandemic. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(SIGCSE ’21). Association for Computing Machinery, New York, NY, USA, 226–231.

Jonathan McKinsey, Samuel Joseph, Armando Fox, and Daniel D Garcia. 2014. Remote pair programming
(RPP) in massively open online courses (MOOCs). In Proceedings of the 2014 conference on Innovation &
technology in computer science education. 340–340.

http://oro.open.ac.uk/74995/

eSTEeM final report October 2021 Remote Pair Programming Page | 18

Ricardo Pocinho, Pedro Carrana, Cristov aoMargarido, Rui Santos, Sandrina Milhano, Bruno Trindade, and
Gisela Santos. 2020. The Use of Digital Educational Resources in the Process of Teaching and Learning in
Pandemic by COVID-19. In Eighth International Conference on Technological Ecosystems for Enhancing
Multiculturality (TEEM’20). Association for Computing Machinery, New York, NY, USA, 810–816.

Fernando J Rodríguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer. 2017. Exploring the pair
programming process: Characteristics of effective collaboration. In Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education. 507–512.

Alfred P Rovai. 2002. Development of an instrument to measure classroom community. The Internet and
higher education 5, 3 (2002), 197–211.

Till Schümmer and Stephan G Lukosch. 2009. Understanding tools and practices for distributed pair
programming. Journal of Universal Computer Science, 15 (16), 2009 (2009).

Alan Clinton Shaw. 2009. Extending the pair programming pedagogy to support remote collaborations in cs
education. In 2009 Sixth International Conference on Information Technology: New Generations. IEEE, 1095–
1099.

Max O Smith, Andrew Giugliano, and Andrew DeOrio. 2017. Long term effects of pair programming. IEEE
Transactions on Education 61, 3 (2017), 187–194.

Karthikeyan Umapathy and Albert D. Ritzhaupt. 2017. A Meta-Analysis of Pair-Programming in Computer
Programming Courses: Implications for Educational Practice. ACM Trans. Comput. Educ. 17, 4, Article 16
(Aug. 2017).

Tomoyuki Urai, Takeshi Umezawa, and Noritaka Osawa. 2015. Enhancements to support functions of
distributed pair programming based on action analysis. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education. 177–182.

Marcella Veldthuis, Hani Alers, Aleksandra Malinowska, and Xiao Peng. 2020. Flipped Classrooms for Remote
Teaching during the COVID-19 Pandemic (CSERC ’20). Association for Computing Machinery, New York, NY,
USA, Article 16.

Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-Programming Helps Female Computer
Science Students. J. Educ. Resour. Comput. 4, 1 (March 2004), 4–es.

Laurie Williams and Richard L. Upchurch. 2001. In Support of Student Pair-Programming. SIGCSE Bull. 33, 1
(Feb. 2001), 327–331.

Laurie A Williams and Robert R Kessler. 2001. Experiments with industry’s “pair-programming” model in the
computer science classroom. Computer Science Education 11, 1 (2001), 7–20.

Krissi Wood, Dale Parsons, Joy Gasson, and Patricia Haden. 2013. It’s never too early: pair programming in
CS1. In Proceedings of the Fifteenth Australasian Computing Education Conference-Volume 136. 13–21.

Kimberly Michelle Ying, Lydia G. Pezzullo, Mohona Ahmed, Kassandra Crompton, Jeremiah Blanchard, and
Kristy Elizabeth Boyer. 2019. In Their Own Words: Gender Differences in Student Perceptions of Pair
Programming. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education.
Association for Computing Machinery, New York, NY, USA, 1053–1059.

N. Z. Zacharis. 2011. Measuring the Effects of Virtual Pair Programming in an Introductory Programming Java
Course. IEEE Transactions on Education 54, 1 (2011), 168–170.

Mark Zarb and Janet Hughes. 2015. Breaking the communication barrier: guidelines to aid communication
within pair programming. Computer science education 25, 2 (2015), 120–151.

eSTEeM final report October 2021 Remote Pair Programming Page | 19

University approval processes

If your project required specific approval from university committees, please provide the appropriate
information below. This is a necessary requirement for future publication of outputs from your project.

• SRPP/SSPP – Approval from the Student Research Project Panel/Staff Survey Project Panel was
obtained according to the Open University’s code of practice and procedures before embarking on
this project. Application number SRPP2019-125

• Ethical review – An HREC-Project-Registration-and-Risk-Checklist was included in the documentation
submitted to SRPP. The project was approved with no further ethical review required.

• Data Protection Impact Assessment/Compliance Check – The Data Protection Impact Assessment
(DPIA) Screening questions were completed and determined that a DPIA was not necessary.

	Investigating the Perceived Benefits to
	Computing Students of Remote Pair Programming
	Executive Summary
	Aims and scope of the project
	Findings
	List of deliverables
	Adeliyi, Adeola; Hughes, Janet; Kear, Karen; Law, Bobby; Murphy, Brendan; Rosewell, Jon; Walshe, Ann and Wermelinger, Michel (2021). Remote Pair Programming. In: SIGCSE'21 - Proceedings of the 52nd ACM Technical Symposium on Computer Science Education...
	Hughes, Janet; Walshe, Ann; Law, Bobby and Murphy, Brendan (2020). Remote Pair Programming. In: 13th International Conference on Computer Supported Education, 02-04 May 2020, Online (originally Prague, Czech Republic), pp. 476–483.
	Figures and tables
	References
	University approval processes

