APPENDIX A: JAVA
SPECIFICATION CHECKING:
SOFTWARE NOTES

Appendix A: Software Notes and Student Use

This appendix contains notes on the CheckM250 and Compilation Helper software.
The project has identified four layers of correctness in Java code:

1. Syntax (a shorthand for whether the code compiles or not)

2. Structure (structural specification)

3. Semantics (functionality shown by methods)

4. Style (non-functional requirements for reusability, readability and similar concerns).

The focus has been on implementing and evaluating code to assess Layer 2, using software
developed for this project called CheckM250, although a Compilation Helper tool has also been
developed to support students in understanding errors encountered in Layer 1.

Section 1 describes relationships to similar work.
Section 2 explains more about how the CheckM250 software works, including:

e interactions between the identified layers of correctness;

e the specification language;

e design choices in assessing structural correctness;

e generating help on compilation errors;

e working with CodeRunner in the VLE, and incorporating CheckM250 in that context.

Section 3 provides some notes on ideas for future development, including known limitations and
design choices.

Section 4 provides references.

Appendix 1 includes emails between the author and Michael Kélling.

1 Relationship to similar work

This project was initially inspired by the Harvard computer programming module CS50 [1], which
provides an environment for students to submit solutions to C and Python exercises and have them
assessed automatically for certain features. CS50 has developed tools called Check50 (for Python)
and Style50 (for the C language), allowing students to perform checks on their code before it is
submitted for final marking. The marking tool developed for this project has been called
CheckM?250, in recognition of CS50’s approach.

The structural specification checking software developed in this project is similar to that described
by Kiraly et al in their MeMOOC platform [2], although Kiraly et al incorporate style and functionality
testing, which was not explored in this initial prototype of CheckM250. Significantly, CheckM250 is
less tightly coupled: its core code is (unlike the MeMOOC software’s) fixed, and makes use of a
separate specification file to customise the testing. This has advantages for use in online marking
and makes CheckM250 more reusable.

2 CheckM250 Software

There are many testing tools that can be deployed in the context of assessing Java code quality, but
this project focussed particularly on structural specification testing, by which is meant testing for the

presence of particular features in students’ code, rather than its conformance to expected
behaviour.

The tutor version of the software was implemented using Java SE 7 (we assume that students’ code
will be built using Java SE 7, as this is the supplied JDK on M250), and Java SE 8 was used to modify
CheckM250 for use on the VLE.

| begin with a review of the layers of correctness we assess in students’ code, and their interactions.

2.1 Syntax

Syntax checking is carried out by a compiler, in our case Javac (Java SE 7), which both tutors and
students have access to. The same compiler is available in our online teaching environment (although
here it is Java SE 8) and this provides access to correctness checking at this level.

To succeed at this stage, students grapple with the syntax of the language, with what constitutes a
well-formed statement, how tokens may be legally used with each other, and how to combine these
features to form a solution to meet a program specification.

The Java compiler provides detailed and potentially confusing feedback on compilation errors. In
addition to CheckM250, this project has also developed a Compilation Helper tool for making
compilation error messages friendlier, based on an existing help file adapted (with permission) from
the Bluel software environment, together with new compilation error diagnostic software developed
for this project.

2.2 Structure

In the second layer, structure refers to a code solution providing various externally and internally
visible features, rather than it conforming to a particular behaviour or functionality. Although the
structure of code cannot be separated from its syntax, syntactic correctness is only a step on the way
to structural correctness. The existence of structural features can be determined after compilation,
but without running the student’s code.

Not only can we check for the presence of certain methods or constructors in code, but whether a
class provides particular instance variables, whether the class extends another class, or whether it
implements a particular Java interface.

Structural correctness is therefore a pre-requisite for unit testing, which is mostly concerned with
testing methods. It therefore can be used to determine if unit tests can safely proceed.

Code that appears to behave appropriately under unit tests does not necessarily meet structural
requirements, although sufficiently careful unit testing might reveal this.

Finally, | have taken the view that code specification is not only about providing expected features, it
is also about not providing unexpected features. It is not necessary to specify these ‘background’
features on a per-problem basis, as their required absence is implicit in the ‘foreground’ specification.
However, there is room for discussion as to the extent to which such background checks should be
performed.

Structural correctness was the main focus of this project.

2.3 Functionality

The functionality of code is tested by ensuring that it produces expected outputs for known inputs,
which, in the case of Java, means that methods must behave as expected. There are existing tools to

assist in this kind of testing, also known as unit testing, and JUnit in particularly is widely used for
Java unit testing [3]. Our online CodeRunner environment also provides a simple form of unit-
testing facility, although its configuration is quite laborious.

Although it might be possible, with extra effort, to configure functionality testing code to cope with
an incorrect structural specification, typically this layer of testing assumes that the structural
specification is correct.

Writing good unit tests is not a trivial task, but it is one that we have tools to support us with
already, so it is not the main focus of this project.

Traditionally on M250 we explain to students how methods should behave, and sometimes we
provide fragments of code to check functionality. Students are also expected to perform their own
informal testing at this level.

2.4 Style

Style forms the final explicit layer of our assessment of correctness, in that we ask tutors to check for
particular issues of style in students’ assignments. Two solutions that are functionally identical may or
may not follow our house style and they may be more or less readable or maintainable.

Automated style checking can be supported through tools such as Checkstyle [4] and PMD [5]. We do
not currently use tools to mark style, but many tutors are aware of them. We expect that students will
develop a good style over a period of time and so we use mostly formative feedback here.

There are many comprehensive external style guides, for example, Google’s [6]. M250’s own Code
Conventions guide provides a basis for further development in this area for automated marking [71],
and some work has been undertaken on developing a style sheet for use with Checkstyle.

In terms of dependencies, style is a somewhat separate issue to the other layers. We consider it to
be a final layer of polish on a solution, which may be developed through refactoring or reworking of
a fully structurally and functionally correct solution.

Feedback on tutors’ concerns with regards to style was elicited via the survey and interview process
in this project. More insight into this question is provided in Appendix B: Interview and Survey
Results.

2.5 Overview of the structural checking algorithm

For our purposes, structural correctness, semantic correctness and stylistic correctness all initially
require that a student’s code compiles successfully.

Structural specification testing can be performed statically on the compiled code (without running
the code), whereas testing of code functionality would be performed dynamically.

In testing structural correctness | am separating the programming interface between the software and
a test harness from how the code beneath this interface achieves a desired outcome.

CheckM250's tasks are modified according to a specification file, which differs for each assignment
set.

The CheckM250 software has the following requirements in order to function fully:

1. Required Java files must exist in the solution. The path to locate . java files depends on the
context in which the code is running, BlueJ or the VLE.

2. Required files must successfully compile. The path to locate . class files depends on the
context in which the code is running.

If the required files do not exist, the marking tool reports this.

If the solution classes do not compile, the marking tool generates some feedback to indicate this
(and in the case of the VLE, the Compilation Helper tool generates help in achieving compilation.)
This is not a limitation of the CheckM250 software so much as a limitation of marking by class
reflection, which is the same approach used by several other tools. If this occurs, the tutor has to
mark the code manually or the VLE cannot provide additional feedback to a student (other than help
on compilation errors).

Once the solution code compiles, it is possible to dynamically generate .class (bytecode) files,
load them dynamically into the runtime execution environment, read the specification file, parse it,
and then build up a picture of the features that should be present in the candidate solution code.
CheckM250 then iterates over the features that the specification requires, generating some form of
output for each feature according to whether it matches the specification or not and returning that
to the context from which the marking code is being run, so that some feedback can be displayed to
the user.

2.6 The specification language

This section outlines the specification language used in this project. Although this is of current
interest, the future direction of work suggested for the structural checking software may make this
approach redundant. However, it is a key innovation in the design of this code that the specification
of a solution is separated from the code that checks the specification of the solution, and this will be
a feature of any further versions of this software.

The design of the specification file was deliberately simplistic, and took into account that at some
stage students might have access to the file. The current design discourages a student copying and
pasting into their solution. However, in the case of use in the VLE (in CodeRunner) the student does
not have access to the specification file in any case. Tutors viewing the specification file is not a
concern.

The default name for the specification file in the VLE is checks . txt. In the tutor-facing tool, the
specification file has no fixed name and can be selected.

Currently the question setter produces the checks . txt manually.

2.6.1 Example specification for a TMAO1 question
Here are the complete contents of a specification file for the one question in TMAO1:

class:public/M250Account/java. lang.Object/

field:private/java. lang.String/M250Account.accountNum
method:public/java. lang.String/M250Account.getAccountNum/void
method:public/boolean/M250Account. isValidLength/java.lang.String
method:public/boolean/M250Account. isValidStart/java. lang.String
method:public/boolean/M250Account.hasValidDigits/java.lang.String
method:public/boolean/M250Account. isValidAccountNum/java. lang.String
method:public/void/M250Account.setAccountNum/java. lang.String
constructor:public/M250Account/void

The interpretation of the specification is as follows. We require:

1. apublic class called M250Account, which is in the default package (hence we have used its
simple name). It extends Object (i.e., it doesn’t need to explicitly extend any class), but
(note the trailing slash), it does not implement any interfaces;

2. a private instance variable of type String called accountNum, belonging to class
M250Account. Note its fully qualified name M250Account.accountNum;

3. methods isValidLength, isValidStart, hasValidDigits,
isVal idAccountNum and setAccountNum. All these methods except
getAccountNum require single arguments of type String. All belong to the class
M250Account, so we must specify their full names. (Conceivably, methods with the same
name could be required in different classes.) Note the fully qualified name for the library
class Java. lang.String, whereas primitive types returned by the methods have simple
names: boolean and void;

4. a public, zero-argument constructor. Note the use of void to indicate no arguments (see
also getAccountNum). This may mean the question calls for a zero-argument constructor,
or it does not call for any constructors, in which case the class will have this constructor
provided to it automatically when it is compiled (a Java language feature).

It is not a lengthy process to hand-write a specification file such as this, though from a programmer’s
point of view this is not an ideal approach. However, manual creation of this file has the advantage
that it requires the question setter to inspect the question carefully, and this can lead to detection of
missing information in the question, a useful side-effect.

Formalising the specification further would allow testing if a specification file is valid. It would be
interesting to explore this, for example using ANTLR [8], but the objective here was to keep the
description simple and facilitate parsing.

The specification file enables automated checking of structural correctness, but also has the
important role of separating the specification from the code that evaluates the specification.

2.6.2 Notes on the specification file
Only classes whose names appear in the specification file are assessed. This means that any support
classes (i.e., ones that students do not alter) are not included in the checks . txt file.

If students are required to modify a given class, its specification must include both code that we
require students to write and code that is supplied, as otherwise supplied code will appear
extraneous when compared with the specification. This is a design choice, as unexpected features in
solution classes are flagged as errors.

The order of lines in the specification file is not significant.

Each line begins with an initial token, namely class, method, constructor or Field, followed
by a colon. The initial token identifies the kind of specification on the line. Any line beginning with a
different token is ignored, so e.g. a line beginning comment: will not become part of the
specification and can be used to make a remark. Each line ends with a newline character.

There are several separator tokens:

e Acolonis used to separate the kind of specification from its specification, e.g.
class:classSpec

e Spaces separate modifiers, e.g. static final

e Dots separate parts of fully qualified names, e.g. test.ClassName

e Commas separate arguments in argument lists, e.g. int,int,String. Note, there are no
parameter names specified at this time. There are no spaces between parameters. Commas
are also used to separate multiple implemented interfaces.

e Forward Slashes separate parts of a class, method, constructor or field specification
E.g. public/void/pack.Y.method3/int,int

1 Reference type specifications
All reference type names must be fully qualified, not simple. The exception is that where a class is in
the default package we must necessarily use its simple name.

This applies to both user-defined and library classes, so for example String must be fully qualified
and we would write Java. lang.String. This is necessary to avoid name conflicts and to allow
the specification checking software to identify the intended class or type correctly.

Currently generic types (bound and unbound) are not fully supported. See Section 3.2 for notes on
this.

2 Primitive type specifications
Primitive types are specified as is, e.g. void, int, or char.

The keyword void is also use to indicate empty parameter lists.
More details and examples of each kind of specification are given in the following subsections.

3 Class specifications
e class:modifiers/package.Name/extendedClass/implementsName,implementsName...
e jJava.lang.Object must be specified as the extended class if no other superclass is
intended.
e [f there is no interface to implement, the line ends with a slash /
e Class names must be specified in full; for example, we refer to java.util _Map not Map.
e Multiple implemented classes can be separated by commas.

As noted earlier, support classes, by which we mean classes that students do not need to alter, are
not specified in checks . txt. CheckM250 only examines classes specified in checks . txt.

4 Method specifications
e method:modifiers/return_type/package.methodName/argument,argument...
e Modifier lists may be empty, which means the line starts method:/, but normally a line
would start method:public/
e Return types must be specified in full if they are classes; primitive types can be specified as
is, including void.
e Arguments are separated by commas, using full names for classes.

e Specify void when there are no arguments.

5 Constructor specifications
Constructors are similar to methods. Because constructor names must be the same as class names,
their parent class names provide sufficient information.

e constructor:modifiers/package.ClassName/argument,argument...

e The modifier list may be empty, which means the line starts constructor:/
e The constructor name is implied from the (owning) class name

e Use full names for classes as argument types.

e Specify void when there are no arguments.

The default zero-argument constructor must be specified explicitly (even though it doesn’t appear in
the class explicitly). This is because at runtime the class will nevertheless have this constructor, and
we are using reflection. As a result, CheckM250 may report that a solution has a zero-argument
constructor missing the modifier ‘public’, because Java has provided a default constructor behind
the scenes, though it is not present in the student’s code. This may require explanation to users.

6 Field specifications
Fields include instance variables, static variables, constants, and static constants.

e field:modifiers with spaces/type/package.Class.name

e Modifier lists may be empty, which means the line starts Field:/
e Extra modifiers are separated by spaces.

e Give the full name of the field, including the class it belongs to.

e Reference type names must be given in full.

CheckM250 is not able to check initial values of fields. This is a fairly complex problem of itself, and it
is debatable whether it falls under the scope of structural specification.

2.6 Compilation helper software

Personal communication with the main author of the BlueJ IDE (Michael Kélling) led to permission to
use the Javac . help file included with the BlueJ 3.1.4 distribution in producing feedback on
compilation error messages. The original Javac . help file has been substantially changed for
reuse in this project and is currently named Javac_1.help. The help file was modified to add
help where none existed, and to suggest alternative reasons for particular errors arising that were
not covered. Some edits were made for style of the language and formatting.

A Gnu Licence applied to the BlueJ source code — however javac.help is a plain text file. The
need to cite the Gnu licence was, in any case, waived by Michael Kélling [9].

The software that processes the help file was written for this project and attempts to match more
specific errors before more general ones, with the aim of providing more targeted advice on
compilation error messages. This component invokes the Java compiler dynamically, captures the
results, selects the first error (if any) using a canonical name, and then uses a lookup in
jJavac_1_help to provide feedback on that error. If there is no error then this component
produces a message ‘Compiled OK’.

It is worth mentioning that the authors of BlueJ are abandoning this approach in favour of a more
modern ‘inline’ display of error messages in the editor window, and amidst doubts of the
effectiveness of this kind of feedback, but | would argue that the approach remains of interest in the
context of online quizzes in the Moodle environment, where options for formatting feedback to
students are more limited.

2.7 Working with CodeRunner

As the CheckM250 software was originally developed for use by tutors in the BlueJ environment, a
number of adaptations were required for it to work in the VLE via CodeRunner questions, for
students.

This section outlines important features of CodeRunner for this work, changes required to adapt the
core CheckM250 code to the CodeRunner question type and reasons for decisions made in this
context.

2.7.1 About CodeRunner
CodeRunner [10] is a question type for Moodle Quizzes, developed by Richard Lobb of the University
of Canterbury, New Zealand.

1 Question types
There are several CodeRunner question types described in the CodeRunner documentation [11]:

java_program. Here the student writes a complete program which is compiled then executed
once for each test case to see if it generates the expected output for that test. The name of
the main class, which is needed for naming the source file, is extracted from the submission
by a regular expression search for a public class with a public static void main
method.

java_class. Here the student writes an entire class (or possibly multiple classes in a single
file). The test cases are then wrapped in the main method for a separate public test class
which is added to the student’s class and the whole is then executed. The class the student
writes may be either private or public; the template replaces any occurrences of public
class in the submission with just class. While students might construct programs that will
not be correctly processed by this simplistic substitution, the outcome will simply be that they
fail the tests. They will soon learn to write their classes in the expected manner (i.e. with
public and class on the same line, separated by a single space)!

java_method. This is intended for early Java teaching where students are still learning to
write individual methods. The student code is a single method, plus possible support
methods, that is wrapped in a class together with a static main method containing the
supplied tests (which will generally call the student's method and print the results).

For structural specification testing we have used both the java_program and java_class types of
question. A significant difference is that java_program type questions can include import
statements. However, java_class covers our needs at this stage.

2 CodeRunner’s approach to marking

CodeRunner uses the output of any code executed in a test (in the case of Java, it makes use of
output sent to the System.out stream) to determine whether a test has been passed or not. The
question-setter indicates what the expected output should be for each test. If the test output
matches the expected output, the test is passed, otherwise it is failed. It is possible to set hidden
tests and to hide subsequent tests on failure of a previous test.

To test structural specification, or other non-functional tests we require, we can invoke a method to
run the test code, and specify the expected output of the test when evaluating a correct solution.

To make use of this approach, the user-interface and BluelJ plugin code for CheckM250 were
replaced with two single-method interfaces that would produce either an ‘OK' response, or feedback
suitable for displaying to students in the VLE.

The CheckM250 code required alterations to cater for the flat file structure in the CodeRunner
environment, which affects where generated files can be expected to be found.

Support files were added to the CodeRunner question, and the Java classpath was altered to find
these files as necessary. The specification file (checks . txt) does not require any modifications for
the use in the CodeRunner environment.

Each test in CodeRunner is completely independent of any others, as the sandbox in which the code
runs (Jobe [12]) is cleared after each test. It is therefore not possible to rely on the presence of a
generated . class file from one test to another. This means that the testing code in this
environment must ensure that . class files are recreated for each test.

3 Check and Precheck modes

Since CodeRunner version 3.1, a question author can provide students with a Precheck button [13],
which students are not penalised for using, so allowing for formative feedback. This also provides
authors with the chance to run some pre-tests on code before running standard test code, which is
(typically) assessed. The Check button is used for assessed tests on students’ code.

A CodeRunner question must be configured to enable Precheck, and individual tests must be
specified for use in either Precheck mode, Check mode, or Both Precheck and Check.

The combination of Precheck and Check modes means that we can provide a ‘safe’ environment to
students under Precheck and then go on to execute assessed tests under Check.

4 Template code

A template class is used to provide scaffolding for the marking code, and has access to some system
variables, including STUDENT _ANSWER, which represents the code a student included in the
answer box in this environment. In a typical CodeRunner question, the student’s answer is
incorporated as is, in the template, as a method or inner class?.

5 Reuse of CodeRunner questions
It was reassuring to note that a CodeRunner question can be successfully duplicated, or exported
and imported from one quiz to another, with all support files being correctly retained.

2.7.2 CodeRunner settings and template code
We can consider three cases for the student’s code:

1. compiles and provides expected features;
2. compiles, but does not provide expected features;
3. does not compile (so does not provide expected features).

We do not know when assessing a solution which of these cases will occur.

If case 2 or 3 occurs then the default is that Javac compilation errors would be displayed to the
student. In case 2 this is because CodeRunner tests cannot be compiled, and in case 3 additionally

L A class embedded in another class

the student supplied code does not compile. Either case is likely to result in multiple errors being
displayed in the feedback the student receives.

We do not wish to subject students to compilation errors unnecessarily, which may be confusing;
more so because these messages in part depend on the template (testing) code that students do not
see and should not have to consider. It is, however, possible to find a middle ground, based on the
Check and Precheck options in CodeRunner v3.1.0.

The solution adopted was to develop the Compilation Helper tool, and deploy it under Precheck.
This tool captures the first error that the compiler finds and then provides some feedback on it, to
suggest how the student’s answer might be fixed. Although | cannot guarantee that this advice is
helpful (interpretation of compiler error messages is not straight-forward, and there may be many
different possible causes for each kind of error), it should be more friendly than a dump of the
compiler’s error messages.

Although it has not (yet) been implemented, code style feedback could also be implemented as a
Precheck test —i.e. for formative rather than summative purposes.

1 Question-level settings adopted

Under CodeRunner question type, the Precheck mode is selected (Figure 1), so that we can use both
Precheck and Check buttons.

Precheck Selected E‘

Figure 1: Precheck option selected

The penalty regime (Figure 2) was set low to encourage students to keep trying. Students were also
allowed to restart their attempt at the quiz level. The use of the ‘%’ mark in the penalty is not
required. However, there must be a comma after the second penalty in the regime in order for the
ellipsis to operate correctly (Figure 2 is missing this second comma).

Marking All-or-nothing grading Penalty regime: | 2%, 4%...

Figure 2: All-or-nothing grading and Penalty regime options

Following recommended practice for CodeRunner [11], our quiz settings required students to pass

all tests (All-or-nothing should be ticked) run against their code to score any marks. The rationale is
that buggy code is not acceptable and that students will attempt to achieve fully correct code if we
do not reward them with part marks for partly correct code.

The Grading is set to ‘exact match’ (Figure 3), which is standard. Exact match means the output must
exactly match what we expected, which is appropriate in this case. The student’s output is therefore
either correct or incorrect.

Grading . Exact match -

Figure 3: Grading set to Exact match

10

The user Interface is the standard Ace editor (Figure 4).

InputUls @ Studentanswer Ace E| Y| Template uses ace

Figure 4: Input User Interface options with Ace selected for template and answer

2 Adding to the classpath in CodeRunner

To access the CheckM250 software jar and the root directory, the path needs altering for the
compiler and the interpreter. To do this, in the Advanced customisation section Parameters box
(Figure 5) it is necessary to add parameters:

{"compileargs"”:["-cp .:CheckM250ForCodeRunner.jar'"],
"interpreterargs'":["-cp .:CheckM250ForCodeRunner.jar']}

Note, this is a JSON array, with two keys, compi leargs and interpreterargs.

~ Advanced customisation

Prototyping Is prototype? No E| Question type{]

Sandbox DEFAULT E| TimeLimit (secs) MemLimit (MB) | 2000 Parameters | orCoderunner.jar'])

Languages @ Sandbox language | Java J Ace Ianguage[J

Figure 5: Parameters configuration to use CodeRunner.jar

“an

Note also the use of the Unix path separator, “-”, since this code is running on a Unix system.

3 Template Code modifications
1. Import statements

To access the CheckM250 code inside the CodeRunner jar, the checks package needs to be
imported by the template class:

import checks.*; //Includes CheckM250 class and SharedUtils

All the auxiliary utility code is in the CheckM250ForCoderunner . jar, so no other import
statements should be needed to run that code as long as the jar is accessible. This covers both
Compilation Help and Specification Check tests.

2. The Precheck facility was used to allow students to perform two pre-tests: compiling their code
and checking its structural specification. The template was modified to include the following Twig?
code:

{% if not IS_PRECHECK %}
{{ STUDENT_ANSWER | replace({"public class ": "class "}) }}
{% endif %}

2 Twig is a templating engine, allowing for dynamic inclusion of code in this environment

11

The interpretation of this templating code is that if CodeRunner is not running in Precheck mode,
the STUDENT_ANSWER will be included in the context in which this templating fragment appears
(which is within the testing code class body). Additionally, the words ‘public class’inthe
student’s answer are replaced by ‘class’.

As already noted, including the student’s answer in the template is unsafe, as the student’s answer is
included as is within the testing code, but we only used this approach when CodeRunner is not
running in Precheck mode.

3. Subsequently | have copied the student’s answer to a string

private static String studentAnswer =
"{{STUDENT_ANSWER | replace({"public class ": "class "}) | e(CCjava®)}}";

Again, the words ‘public class” were replaced by ‘class”. More significantly, special
characters in the STUDENT _ANSWER were escaped according to Java escaping rules, so that the
studentAnswer string is well-formed.

This second construct is safe, in the sense that it can be compiled whether the student’s code is valid
or not.

4. Further the student’s answer was saved to a fixed location:

public static void main(String[] args) {
__Tester__ main = new _ _Tester___ (;
SharedUtils.writeStudentAnswer(""Answer . java', studentAnswer);
main.runTests();
}
public void runTests() {
{{ TEST.testcode }};
}
The method writeStudentAnswer, which is in the checks . ShareduUti I s class, takes the
escaped student’s answer (from the variable studentAnswer), and saves it physically to the
provided filename, in this case Answer . java. The remainder of the code here is standard
template code to invoke the question setter’s test code.

The shortcut of saving to a fixed file name has been taken, although it may have been possible to
infer the correct file name based on the student’s answer. At compile time, because the word
‘public’ has been stripped from the class definition, the compiler accepts this situation.
(Otherwise Java rules dictate that the compiler would generate an error because the student’s
answer was not saved in a file whose name matched its class name.)

Note, | have assumed the student’s answer is a complete class (not a method).

5. When running in Check mode, the Twig code in part 2 above results in the student’s code being
literally included in the testing code so that we have direct access to its features for testing
purposes. If it turns out that the code does not compile at this point all we can say is that we gave
the student the opportunity to work this out in Precheck, so now they will have to deal with the
messiness of compilation errors.

12

The fact that in both Precheck and Check cases we also include the student’s answer as a string in
our testing code means that we can write the answer to disk, compile it, generate a . class file,
dynamically load it, and then run our structural checking code on the result, assuming it compiles.

4 CodeRunner Support files
Three support files (Figure 6) are required to make the marking tools work.

A Support files

Run-time data B

k= Files
y v v
4 4 f
— — —

CheckM250ForC checks txt javac_1 help

Figure 6: Support files required in CodeRunner
The support files required in the CodeRunner environment are:

1. CheckM250ForCodeRunner . jar, which contains all the support software, including
compilation help and specification checking code, plus related code such as methods to read
and write files in the CodeRunner environment, and in particular the method
writeStudentAnswer().

2. checks. txt, the structural specification file for the question. This file should only be
needed for the specification checking.

3. javac_1.help, the modified version of Bluel’s compilation help feedback file. This file
should only be needed for the Compilation Helper.

2.7.3 Rubrics

We explain to the students how to use the Precheck and Check buttons. Unfortunately, Check in
CodeRunner does not have the same meaning as Check in other interactive question types. Check in
CodeRunner may incur a penalty, whereas Check in other question types does not.

1 Example rubric on the use of the Precheck and Check buttons

You can 'Precheck' your answer without penalty, which checks the specification of your code. When you do
this, we will check that you have methods and variables required by the question. This is an experimental
feature.

If your code passes the 'Precheck’, you can 'Check’ your answer next.

Although you can 'Check’ and 'Precheck' your answer repeatedly, you will only be able to 'Submit all and
finish' once. (To try again, you need to restart the quiz.)

13

2 Example information on the Compilation Helper tool

This test checks whether compilation succeeds or fails, i.e. whether your code is syntactically correct, not that
it meets any other requirements.

If your code compiles correctly, you will see the output 'Compiled OK', and a green tick.

If your code does not compile correctly, you will receive feedback on the first error found in your code. Scroll
down to see the feedback.

We hope that the feedback on any errors in your code is helpful, but please note that this is an experimental
facility:

We refer to your code as Answer . java. Don't be put off by this - it's just a container for your code. You are
allowed to include more than one class in the answer box, and you do not have to write a class called Answer.

It is often not easy to determine why a particular error occurred, so the help messages you will see are often of
a general nature, rather than specific to your code. This is particularly so for certain kinds of errors that occur
for a variety of unrelated reasons. Read through the different suggestions and one of them will relate to your
code.

For some kinds of error there will not be any help, because they are less common and we haven't
implemented any help on them yet. Please let us know if you find a compilation error and no help on it.

Any code you enter in the answer box below must be in a class. A class has this general form:

class SomeClassName

{
3

//instance variables, methods and constructors here..

2.7.4 Example Feedback

Example feedback for a failed test
Example feedback when not passing all tests is illustrated in Figure 7. This includes generic feedback:

Your code must pass all tests to earn any marks. Try again.
and feedback for each test, pointing out which tests have been failed.

Using the ‘Show differences’ button, differences between the student’s output and the expected
output can be highlighted.

¥ /] This test checks that there is a method setHexNumber() Number| 08808 is not valid Number@®@e®is
[/ that reports failure for this argument, FAEH Txh
// and that hexMumber has not been set
M256Number number = new M258Number();
number _setHexNumber ("00880") ;
System.out.println(number.getHexNumber());

¥ /] This test checks that there is a method setHexNumber() Number| 080 [is not valid Humber@00is n
I/ that reports failure for this argument, FhEH *HHE
// and that hexMumber has not been set
M256Number number = new M258Number();
number . setHexNumber ("008") ;

System_out_println{number getHexNumber()):

(] I »
‘Your code must pass all tests to earn any marks. Try again

Hide differences

Figure 7: Feedback at the question level, after pressing ‘Show differences’ button

14

The highlighting should help the student understand that there are some spaces missing in their own
output, which is on the right.

Example quiz level feedback for the ‘Practice for TMAO3’ Quiz
Feedback is also generated via quiz level settings:

We're glad you took the time to do the Practice for TMAO3 quiz - we hope it's
helped you to get ready to submit your actual TVIAO3 and it should also help you
prepare for question 3 in the exam.

However, this level of feedback is only received by a student if the state of their quiz moves to
‘Finished’ by their pressing the Submit and Finish button.

2.7.5 CodeRunner tests for specification testing
Currently there are two tests supported by the code developed in this project:

e SharedUtils._compile("Answer.java") runs a compilation check, and generates
help on compilation errors in the student’s answer. This supports Layer 1 checking.

o CheckM250.specificationCheck() runs the structural specification check, with
feedback on structural specification errors. This supports Layer 2 checking.

The expected output for these tests is Compiled OK and Specification OK. If the
expected output is not seen, the feedback from the tool is shown to the student.

1 mark was awarded for each test (whether specification or functional) in our examples. These
marks are then aggregated to determine the question level mark, modified by the penalty regime
and how often the student used the Check button. The question level mark then contributes to the
quiz level mark.

1 Example CodeRunner test case for the Compilation Helper
Figure 8 shows a typical configuration for the Compilation Helper tool.

~ Test cases

Testcase 1 B SharedUtils.compile ("Answer.java");

Standard Input

Expected output Compiled OK

Extra template data

Test properties: B [T Use as example Display Show E‘ Hide rest if fail Mark | 1.000 Ordering@

Precheck test type Both E‘

Figure 8: Typical configuration to use the Compilation Helper component

15

Note that Precheck test type is set ‘Both’, to run this test for both Precheck and Check buttons. It is
also suggested to tick ‘Hide rest if fail’, to prevent further tests from running if the student’s code
does not compile.

2 Example CodeRunner test case for Structural Specification check
Figure 9 illustrates a typical test case to run a structural specification check in CodeRunner.

Test case 2 ﬂ CheckM250.specificationCheck() ;

Standard Input @

Expected output [E Specification CK

Extra template data [

Test properties: [E Use as example Display Show

Precheck test type [E Both E|

Figure 9: Typical configuration to use the structural specification checking component

As for the Compilation Helper, the Precheck test type is set to ‘Both’ Precheck and Check, so that
structural checks are not abandoned during functionality tests. This change is advisable since
subsequent functionality tests may succeed even though the structural checks do not (and we still
require structural correctness). The option ‘Hide rest if fail’ should also be ticked to prevent further
tests from running in the event of compilation or structural checks failure.

In Precheck mode tests marked as ‘Check’ are never compiled. In Check mode, as configured, both
Precheck and Check tests are compiled and Check tests will cause a compilation error if the
Precheck has not been passed. This is why we have advised students to first pass the Precheck
before attempting the Check.

Future work will explore added provision of code style help in this environment.

16

3 Example output for a correct solution
Figure 10 illustrates the feedback when pressing the Precheck button and both Compilation and
Structural specification are correct:

l Precheck l l Check l

Precheck only

Test Expected Got
&/ SharedUtils_compile("Answer_java"); Compiled OK Compiled 0K v
& CheckM2508 . specificationCheck(); Specification OK Specification OK «/

Figure 10: Example output for correct compilation and structural specification

It has been reported that the green ticks can be quite motivating to students and we noted that
some students made dozens of attempts before succeeding.

4 Standard functionality test cases

Other tests we wish to run for a question (i.e., standard functionality tests) use the normal
CodeRunner approach, predicting the expected output for executing some code. These tests are run
under Check mode, configured as shown in Figure 11, under the Precheck test type.

Precheck test type Check only E‘

Figure 11: Precheck configuration for functionality tests

It is also worth noting that this setting is only honoured when Precheck is selected for the question
type (see Section 2.7.2).

17

2.8 Student use in the VLE

This section provides some more evidence for the usefulness of the marking tools in this project in
the context of CodeRunner questions and student use in the VLE.

Three formative CodeRunner quizzes were deployed in 2017J and two of the marking tools
developed during this project were deployed on two of these quizzes:

e ‘Practice for TMAOQ2’ included the Compilation Helper tool
e ‘Practice for TMAOQ3’ included both the Compilation Helper and the Structural Specification
Checking tools.

‘Practice for TMAO1’ did not use either of these tools.

We intended that these quizzes would help students prepare for their TMAs, by providing similar
questions to parts of their actual assignments. In addition the quizzes provided a platform for testing
the software developed through this project.

2.8.1 How many engaged?
Table 1 presents some statistics on the numbers of students who engaged with the formative
quizzes in 2017J.

Table 1: Some statistics for M250 formative quizzes in 2017J

Practice for TMAO1 | Practice for TMAO2 | Practice for TMAO3
Week opened 4 11 15
Reg at week (N) 1409 1347 1284
All Attempts 917 514 479
Unique Pls 9173 492 416
Repeat factor 1 1.06 1.15
(Attempts /
Unique Pls)
% of Reg25 66.2 35.5 30.0
(N = 1385)
% Attempts / 65.1 38.1 37.1
Reg at week
% of total engaged 90.6 48.6 41.1
(N =1012)
Finished state 224 155 124
% Finished / 24.4 30.2 25.9
Attempts
Forum postings 403 162 241
Checks 4114 1582 954
Mean Checks / 4.5 3.1 2.3
attempt
Max checks 94 80 57
Median Checks 1 1 1
Checks Mode 1 1 1
Checks count 5.2 6.3 7.6
Skewness

3 ‘Practice for TMAO1’ only allowed 1 attempt per user.

18

There were 1012 unique IDs in these data sets, representing 73% of the Reg25 cohort taking part —
about three quarters of students. About two thirds of Reg25 engaged with the first quiz, and about
a third with the second and third quizzes. We do not attribute this drop off in engagement to the
use of the CheckM250 software tools on the second and third quizzes; rather we suggest it is the
engagement of students with formative quizzes in the later stage of the module that has dropped.

Table 2: Number of formative quizzes attempted by students

Number of N % of total engaged | % of Reg25
formative (N=1012) (N =1385)
Quizzes done

1 439 43.3 31.7

2 330 32.6 23.8

3 242 23.9 17.5

Table 2 shows how many quizzes were attempted by students (e.g. 439 students did just one quiz).
Regarding the quizzes on which the new marking tools were deployed:

e 264 students did both TMAO02 and TMAO3
e 228 did TMAO2 but not TMAO3
e 152 did TMAO3 but not TMAQ2

A few students continued to use the quizzes after the module had officially finished, as they still had
access to the website for some months. These students may have been preparing to retake the
module, or simply continuing to practice.

2.8.2 Student postings

After the initial setup, the CheckM250 and Compilation Helper facilities embedded in the ‘Practice
for TMAO2’ and ‘Practice for TMAOQ03’ quizzes were used alongside normal functionality tests.

There were many examples of students posting their code and asking for help in fixing it, as we
intended, as well as general queries on how to interpret results returned by the CodeRunner
environment.

Students were also able to compare approaches to solving problems, without fear of discussing an
assessed question. Because they were able to share answers, they were also able to copy and paste
each other’s code into their own environment and test it immediately, to help each other fix it.
There was evidence of less able students learning from more able ones.

Next | have provided some examples of student postings supporting the use of this formative
approach to teaching, and illustrating the use of the structural checking and compilation helper
tools.

19

1 Welcoming the chance to practice and the use of Precheck

The comment below mentions the Precheck facility (with compilation and specification help) made
available in Practice for TMAO02 and TMAO3, which was not available on summative iCMAs, and also
shows appreciation for the opportunity to practice using a formative quiz.

deffo worth the practice I think, even if it is just for the exam. The best way to
learn is to practice! | also like the sound of the precheck - it would be useful if the
iCMAs could have a precheck also! @

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2568602#p 18489331

2 On help received, and practising as opposed to reading

Thank you so much for your help ... | do enjoy trying to write code but | often find
it difficult to make the leap from the books to a real practical question like these
practice questions.

I find | get so much more out of these exercises compared to anything else.

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2582065#p18728352

3 Soliciting help
An example of a student soliciting help on how to write their answer in the form of a class:

can anyone help please ? | do not know (the code for) how to “write “ the class
M250Number ?

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2431765#p17608638

4 Specification error through misspelling a method name

In this example from Practice for TMAQ2, the student reports that their code works in Bluej, because
they have consistently misspelled a method name, but the code does not meet the question
specification and causes a compilation error in CodeRunner:

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2480565#p17910340

Can some one please help me.
I'm getting error:

__Tester__.java:294: error: cannot find symbol
e.reduceToldling();

A

symbol: method reduceToldling()
location: variable e of type Engine
1 error

here is my code in relation to "reduceTolding()"
Engine class:
public void reduceToldling()...

The student has misspelled the method name reduceToldl ing, substituting an I foran 1.

20

The test code does not compile, so the unit test cannot be run. However, running a structural check
on this code would flag that the expected method (reduceToldl ing) was not found, and
another method with an unexpected name (reduceToldl ing) was found.

5 CheckM250 finds error missed by unit testing

A student was alerted to a problem with the specification of their equals method — it should have
taken an Object as a parameter. This was flagged by CheckM250 in Practice for TMAO3 (Figure
12).

| have completed the task when i run to check so all is ok with passing it but when i click to pre-check 1 get this:

CheckM256 _specificationCheck(); Specification OK In class Animal, the reguired method with signature eguals(java.lang.0l
Check that you have methods with the required names and signatures.

Specification errors found: 1

My equals i created this:
public boolean equals(Animal obj)

{
return (ob] getweek() == this getieek()) && obj getkind() equals(this getkind()) && obj getame() equals(this getName()):

}
| am unable to add @Override unless i change the method header to :
public boolean equals({Object obj)
But if i do that i am unable fo to do this -> obj.getWeek() // as obj does not have that method (this i know).

So how are we to override the method so it passes the check?
Figure 12: CheckM250 finds an error not picked up by unit testing

Notice the feedback from CheckM250:

In class Animal, the required method with signature equals(java.lang.Object) is missing. Check that
you have methods with the required names and signatures.
Specification errors found: 1.

The student’s query indicates that they have understood that they needed to override the equals
method and they have made the first step to correct this, then run into a dereferencing problem
while attempting to access the method getWeek.

Another student responded to the question:

“to override methods, they need to have the same signature, that is, the same
method name and argument types, and number of arguments. Otherwise you are
overloading them instead.

So have a look at equals in Object, you need to use the same signature to
override.

Then have a look in Unit 11. "Writing an overriding equals method" - that
hopefully should help @

21

The student responded

“yep looking at unit 11 i see i was overloading instead of overriding Thank you.

A review of the student’s submissions shows that on their 10™" attempt at the problem they changed
equals(Animal) to equals(Object) as required.

The student’s progress suggests an understanding of the separation between the specification of
their code and its functionality. The student first fixed the header of the method equals and then
continued to ask in the forums about how to get the body of the method correct (how to cast the
object received to an Animal so they could access its methods).

In this case our own tests run under the Check part of the question did not check for students
overloading rather than overriding equal s(), and all the functionality tests for this student were
passed. However, even though the main Check in CodeRunner was passed, the student continued
working on the problem until they understood why they had failed the Precheck and then fixed it so
it passed both Precheck and Check.

This example also illustrates that code may pass functionality tests, but fail specification tests.

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2582065#p 18578573

6 CheckM250 finds wrong return type for method

Figure 13 shows an example from a student with an incorrect return type for their getAnimals
method, which was flagged by CheckM250 as an error.

I'm missing something very obvious, but the Pre Check is not liking:
public Set<Animal= getAnimals()

{

return animals;

Figure 13: Method with an incorrect return type flagged by CheckM250

It compiles fine in Blueld, but not in CodeRunner. Any thoughts? Tips?

The student is actually confusing compiling correctly with specified correctly. The output the student
saw from the quiz is shown in Figure 14 and reports that the code ‘Compiled OK’ (here the student
has a green tick), but the second output indicates that the answer did not meet the structural
specification. This is a separation of concerns in correctness that students often do not grasp.

Precheck only

Test Expected Got
v SharedUtils.compile("Answer _java"); Compiled OK Compiled OK (v
*x CheckM258 . specificationCheck(); Specification OK In class Shelter, the method getAmimals() should have return type java.util.List »x

:-{ The required methods are present, but their headers aren’t quite right
:-(AlL the reguired fields are present, but their declarations aren't quite right.
Check that the modifiers and types of your variables are correct

Specification errors found: 2

Show differences

Figure 14: CheckM250 feedback on errors in method and field declarations

22

Another student responded, adding bold formatting to emphasize the key point in the feedback.

As per the error message:
"In class Shelter, the method getAnimals() should have return type java.util.List"
So it seems like you were expected to have created a List of animals, not a Set?

This led to the student re-reading the question and fixing their answer.

In the student’s defence, this was their second attempt at the problem, and they apparently did not
notice that the question had changed, as variants were being used. In their first attempt at the
problem, the question called for a Set to be used. However, this example illustrates two things
well:

i) confusion between compilation and other kinds of correctness;

ii) the power of the feedback in generating a discussion, and alerting a student to a problem with
their code. The two problems identified are that the instance variable should have been based on a
List, and that the getter method for that variable needed the same type.

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2611174#p18777393

7 Formative quiz helping to pass a TMA
Finally, the feedback below encourages us to continue using formative quizzes:

Hi, i just want to thank everyone especially ... i did very well in the real TMA and
without the help completing the practice TMA i would not of had a clue so thanks

https://learn2.open.ac.uk/mod/forumng/discuss.php?d=2466343#p17839248

2.8.3 Lessons learned

The Compilation Helper tool can be used in the VLE to provide more friendly feedback to students on
compilation errors, so assisting understanding of Layer 1 correctness.

We found that the structural checking tool applied to Layer 2 was able to detect errors that would
prevent unit tests from succeeding, to detect errors that unit tests might not detect, and to find
errors that markers would comment on for pedagogical reasons.

Tutors had reported that misspelled variable and method names, use of wrapper types for primitive
types, incorrect access modifiers and misuse of the static modifier were errors they had on
occasion not noticed when reading over students’ code and these are examples of errors that
CheckM250 can pick up in the VLE and advise students on.

We saw that we could help students to make progress towards a correct solution, with peer support.
In Example 4, the student’s code ran correctly in Bluel, because they had made an error consistently
in their own code. In cases like these, students’ own testing will not pick up the error, and
specification checking is helpful.

We noted also that some such errors may nevertheless result in code that passes unit tests, such as
in Example 5 of Section 2.8.2, failure to override an equals method. In this case, our own unit
tests had not checked for overloading rather than overriding equals, and all the functionality tests
were passed.

23

The use of the static modifier could easily be missed by a unit test, but it is worth flagging as a
specification error to students, as it may indicate reverting to a procedural rather than an object-
oriented style of coding.

It is an acknowledged hazard [14] of automated testing that it depends on formulation of
appropriate tests, and this applies particularly to unit testing. However, we have found that
structural specification may be made more complete with less effort.

These results also support our use of specification tests in both Precheck and Check modes. A
common issue is due to substitutability of argument types, for example consider a student writing:

public short something(short x) { return x; }
when the method header should be
public int something(int x) { return x; }

The student’s code could pass unit tests expecting an Int to be returned by the method, but the
code would fail a structural specification check.

We also noted some limitations with the quiz report data generated by the VLE, which we are
discussing with the VLE developers.

This pilot has also helped to inform discussion of appropriate settings for CodeRunner questions on
M250, with and without the use of the marking tools developed in this project.

3 Notes on potential for future development

This section provides notes on software development opportunities to be explored for this project.

3.1 Higher priority ideas

3.1.1 Intuitive summary of candidate solutions (for tutor-facing software)

Currently the information provided to tutors is generated by reflection and covers any classes
determined to be required in the candidate solution.

A current example of information provided to tutors is as follows:

Fri Jan 19 10:23:03 GMT 2018
Methods defined in the solution classes

In class SneakyHoverFrog, public void setColour(OUColour)

In class SneakyHoverFrog, public void setlsSneaking(boolean)

In class SneakyHoverFrog, public boolean getlsSneaking()

In class SneakyHoverFrog, public void startSneaking()

In class SneakyHoverFrog, public void stopSneaking(Q)

In class SneakyHoverFrog, public void paniclfCanBeSeen(Amphibian)

Fields defined in the solution classes
In class SneakyHoverFrog, private boolean isSneaking

Constructors defined in the solution classes
In class SneakyHoverFrog, public SneakyHoverFrog()

However, the java bytecode disassembler, javap [15] also allows us to determine information
about a .class file’s contents:

24

>jdk.\bin\javap —private SneakyHoverFrog.class

Note that the use of —private as a parameter to javap extends the information to private
members of a class. This could be used to form the text in the ‘information’ panel in the CheckM250
output for tutors. For example it might read:

public class SneakyHoverFrog extends HoverFrog {
private boolean isSneaking;
public SneakyHoverFrog();
public void setlsSneaking(boolean);
public boolean getlsSneaking();
public void setColour(ou.OUColour);
public void startSneaking();
public void stopSneaking();
public void paniclfCanBeSeen(Amphibian);

}

This output reflects the order of declaration of members in the file. Note that it includes

e inheritance information;

e implements information (none in this case);
o fields;

e constructors;

e methods.

Using this approach, Javap needs running for each class found in a candidate solution. However, it
may be confusing to a marker to include classes that are provided as support files. Excluding
reporting on support classes adds a layer to the problem: the need to exclude these classes within
the code that invokes javap.

3.1.2 Alternative approach to specification of solutions

A specification such as java.util _.Map<Integer, java. lang.String> becomes a raw
jJava.util _Map at runtime because of Java’s type erasure? [16]. CheckM250 can currently only
report on such structures with respect to their raw types.

The java bytecode disassembler (Javap) output includes generic type parameters. This suggests an
opportunity to use a disassembled representation of each required class in the solution as an
alternative form of structural specification.

The current specification file checks . txt includes the names of the classes required in the
candidate solution. If using javap, it would be necessary to determine the names of required
classes a different way, perhaps through a file that lists the names of the required classes, or by
placing examples of appropriate solution classes in a designated solutions folder.

The parsing of the specification would necessarily need to be different and may be more complex to
achieve, since the current specification has been written to facilitate parsing.

Another tool worth considering in this context is TypeTools [17].

4 Raw types and type erasure are backward-compatibility fixes introduced in Java 1.6, when generic types were
added to the language.

25

3.1.3 Specification of formal parameter names

Names of formal parameters are not currently checked by CheckM250. It may be worth exploring
adding this functionality at a later date, since we may specify these in assignments (although it is not
common).

Currently the feedback simply says that a method has or doesn’t have the required signature (since
signatures do not include parameter names).

In Java 6 and 7 the —g argument to the compiler allows generating bytecode information about
parameter names. Investigation suggested that it might require a third-party library like asm [18] to
retrieve information about parameter names in that context. Because development has initially
been focussed on Java SE 7, this approach has not been explored further.

However, In Java 8 there is the compiler option —parameters and this results in more useful
information being added to the bytecode. Example code from Oracle tutorials
MethodParameterSpy class online [19] illustrates accessing information about parameters from
bytecode. Figure 15 illustrates access to the name of a parameter aRunner in class Runner. java
from its bytecode file (class Runner).

C:\OULocal\TEMPdelete\TMAB3_Project_0G4_Sol>"\Program Files\java\jdkl.8.0_131\bin|
"\javac -cp ou.jar -parameters x.java

C:\OULocal\TEMPdelete\TMAB3_Project_0O4_Sol>"\Program Files‘\java\jdkl.8.0_131\bin|
“\javac -cp ou.jar -parameters x.java

C:\0OULocal\TEMPdelete\TMAB3_Project_04_Sol>"\Program Files\java\jdkl.8.0_131\bin|
"\java MethodParameterSpy Runner
Number of constructors: 1
public Runner()
Number of parameters: @
Number of declared constructors: 1
public Runner()
Number of parameters: 0
Number of methods: 9
public int Runner.compareTo(java.lang.Object)
Return type: int
Generic return type: int
Parameter class: class java.lang.Object
Parameter name: aRunner
Modifiers: 4096
Is implicit?: false
Is name present?: true
Is synthetic?: true

Figure 15: Example access of parameter name information from bytecode in Java 8

3.2 Lower priority enhancements

1. If the project in Bluej changes, the tutor-facing tool does not currently detect this; the tool
must be relaunched. This problem does not arise in student-facing code. This is only a minor
inconvenience on the tutor facing side.

2. The need to specify void for empty parameter lists in the specification file could possibly be
removed. This is not a defect. This is moot if an alternative approach to specification is
explored.

3. It may be possible to perform tests without writing the student’s answer to disk, by loading
and compiling the student’s classes dynamically in memory instead. However, the current
approach of creating a physical file is working. Not a defect.

4. CheckM250Q’s reporting on zero-argument constructors could be improved to account for
Java’s provision of a default constructor when none is present in the student’s code. The fall
back is making sure that students understand about default constructors.

26

3.3 Also considered

The following items have also been considered for further code development, but it is suggested
here that these should not be addressed.

1.

If the student’s code does not compile, the specification testing has to end. This is
reasonable, since the code cannot be parsed in this case, and it would be difficult to extract
parts of it that might be compiled for comparison with a specification. Human testing is the
intended fall-back.

CheckM250 does not compile software automatically for tutors; they must press a compile
button themselves. A future version of the tutor-facing software might perform this step
automatically. There is no plan to implement this feature in CodeRunner for students. It is
typical in BlueJ and CodeRunner to have to press a compile button anyway.

Extraneous public classes in a student’s solution may suggest that it is fundamentally
incorrect. However, the most likely reason for the presence of classes that appear to be
extraneous is a student misspelling a required class name. Since CheckM250 will already
report the absence of a required class, students are in a position to notice that their own
class has a similar, but not the same name (e.g., it may be missing an initial capital letter).
Adding a check for extraneous public classes might result in duplication of feedback,
mentioning the correctly spelled name and the incorrectly spelled name.

CheckM250 does not allow an explicit check for the existence of specified user-defined Java
interfaces. However, CheckM250 can check whether classes implement a user-defined
interface and this will fail anyway if the interface is not provided. So there is another way to
check the same requirement.

By design the software does not check for access modifiers on classes. M250 does not
discuss access modifiers on classes, or inner classes at all, and so students will generally be
unaware that there is a significance to this. If told that there is an access modifier missing on
a class they are likely to be surprised rather than enlightened, so it does not seem important
to implement this feature. (In CodeRunner there are currently additional issues with
specifying classes as public, due to the need to save answers in a file, whose name ought to
match a public class file name.)

Support for handling of unbound type parameters, which are an advanced language feature
not covered in OU modules, could be added. However, if they were to occur they would
appear as Object types at runtime, due to type erasure [16], and could presumably be
specified that way.

Initial values of fields are not checked and this would be difficult to implement with any
generality. It is unusual for TMA questions to specify initial values of fields apart from in
constructors and for constants. If this is to be addressed, it should be limited to constants
(static or non-static) initially, then we can consider whether constructor initialisation can be
handled.

27

4 References

[1] €S50: Introduction to Computer Science [Online] https://online-learning.harvard.edu/course/cs50-
introduction-computer-science Accessed October 11th 2018

[2] S. Kiraly, K. Nehéz, and O. Hornyak, “Some aspects of grading Java code submissions in MOOCs,” Research
in Learning Technology, vol. 25, Jul. 2017.

[3] “Junit.” [Online]. Available: https://junit.org/junit5/. Accessed: 25-May-2018.

[4] “Checkstyle.” [Online]. Available: http://checkstyle.sourceforge.net/. Accessed: 25-May-2018.

[5] “PMD an extensible cross-language static code analyzer.” [Online]. Available: https://pmd.github.io/
Accessed: 25-May-2018.

[6] “Google Java Style Guide” [Online] https://google.github.io/styleguide/javaguide.html Accessed 11-Sep-
2018

[7] M250 Code Conventions [Online]
https://learn2.open.ac.uk/pluginfile.php/2414045/mod resource/content/5/M250 Code Conventions ed2.p
df Accessed 11-Sep-2018

[8] ANTLR [Online] http://www.antlr.org/ Accessed 11-Sep-2018

[9] Personal Communication with Michael Kélling, emails in Appendix 1, 18" April 2018

[10] Lobb, R. and Harlow, J. 2016. CodeRunner. ACM Inroads. 7, 1 (2016), 47-51.
DOI:https://doi.org/10.1145/2810041.

[11] CodeRunner question types [Online] http://CodeRunner.org.nz/mod/book/tool/print/index.php?id=184
Accessed October 10t 2018

[12] Jobe Sandbox [Online] http://CodeRunner.org.nz/mod/book/view.php?id=179&chapterid=655 Accessed
September 11 2018

[13] Note on Precheck availability in CodeRunner v 3.1 Released
http://CodeRunner.org.nz/mod/forum/discuss.php?d=46 Accessed September 11t 2018

[14] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assessment of programming,” Journal on
Educational Resources in Computing, vol. 5, no. 3, pp. 4-20, 2005.

[15] javap - The Java Class File Disassembler [Online]
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javap.html Online accessed 2-Oct-2018
Accessed September 11" 2018

[16] Type erasure [Online] https://docs.oracle.com/javase/tutorial/java/generics/erasure.html| accessed 14th-
Sep-2018

[17] TypeTools [Online] https://github.com/jhalterman/typetools Accessed 14th-Sep-2018

[18] ASM [Online] http://asm.ow2.org/asm33/javadoc/user/org/objectweb/asm/ClassReader.html| Accessed
October 11th 2018

[19] Obtaining names of method parameters [Online]
https://docs.oracle.com/javase/tutorial/reflect/member/methodparameterreflection.html Accessed 14th-Sep-
2018

28

Appendix 1: Communication with Michael Kélling
Emails from 18" April, 2018.

From Anton Dil to Michael Kélling
Greetings Michael,

I hope you are well... Congratulations on your professorship!

I’'ve written a small program that aims to reuse the javac.help file distributed with Bluel, which | have
somewhat modified and extended. My understanding is that this kind of reuse is acceptable under the GNU
license, but | thought | would just ask you if there’s anything | should be aware of around that. My intention is
to use it behind the scenes in a code grader as the first step. The grader doesn’t proceed if the code doesn’t
compile, but if there’s a compilation error | thought | would offer some help. (I’'m not sure students are in the
habit of pressing the ?” in BlueJ | must say.) And sometimes there are so many reasons an error could come up
I’m not sure it necessarily helps to list six reasons an error could arise. Anyway, that was the idea. | suppose the
blackbox data also suggests some particular errors one should concentrate on explaining well.

If you have any comments on this, do please let me know. | suppose | would need to make the code available as
open source outside of the system | want to use it with (Moodle). But the code itself is minimal so far — it’s the
modified javac.help that forms the bulk of it at this stage.

Incidentally, | got the impression that this help was intended to be more specific than it seems to have wound
up being, given the presence of * and {} markers that could presumably be filled in with some information,
which | haven’t seen done in the context of the ‘?’ button, but maybe | missed that happening.

Kind regards,

Anton

From Michael Kélling to Anton Dil

Dear Anton,

You are very welcome to use that file if it is useful to you. If the GNU license and re-publication is a problem or
too cumbersome, | am also very happy to give you permission to use this file without these license restrictions.

We have not maintained this file for quite some time, and we are actually phasing out its use in BlueJ. As you
say, not too many students click the question mark, and we started being less convinced of the value.

For the latest Bluel version, we have rewritten the editor, with a substantially changed method of error
handling and reporting (done continuously in the background now, with error display in popups close to the
occurrence).

In other words: The file may well be out-of-date with current compiler versions, but you are very welcome to
use it for your own software.

Kind regards,
Michael

King’s College London

29

